需求人群:
"目标受众主要是时尚行业的电商企业、虚拟现实技术公司以及图像处理领域的研究者和开发者。该技术能够帮助电商企业提升用户的在线购物体验,通过更真实的虚拟试穿效果增加用户的购买意愿。同时,虚拟现实技术公司可以利用这项技术提升虚拟环境中的用户体验。研究者和开发者可以通过开源代码进行算法优化和功能扩展。"
使用场景示例:
案例一:电商平台利用BooW-VTON技术,让用户在线上试穿服装,提升购物体验。
案例二:虚拟现实公司将BooW-VTON集成到其产品中,增强虚拟试衣间的功能。
案例三:时尚设计师使用BooW-VTON进行服装设计的虚拟展示,减少实体样衣的制作成本。
产品特色:
• 无需掩码的伪数据训练:通过创新的训练方法,提高虚拟试穿的真实性。
• 服装图像与人体融合:优化算法,使服装图像与试穿者的身体自然融合。
• 户外环境适应性:特别针对户外环境光线和背景变化进行优化。
• 多数据源训练:结合多个数据源进行训练,增强模型的泛化能力。
• 高分辨率试穿效果:支持高分辨率的试穿图像生成,提升用户体验。
• 开源代码:提供完整的开源代码,方便研究者和开发者进行二次开发和研究。
• 灵活的模型配置:允许用户根据不同需求调整模型参数,实现定制化的试穿效果。
使用教程:
1. 访问BooW-VTON的GitHub页面,克隆或下载代码库。
2. 根据README.md文件中的指南,安装所需的依赖和环境。
3. 准备训练数据,包括服装图像和人体图像。
4. 运行训练脚本,开始模型的训练过程。
5. 利用提供的数据对进行测试,评估试穿效果。
6. 根据需要调整模型参数,优化试穿效果。
7. 将训练好的模型部署到实际应用中,如电商平台或虚拟现实应用。
浏览量:88
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
无需更换,即可虚拟试穿各种服装。
Kolors 虚拟试穿 AI 是一款利用人工智能技术,通过用户上传的照片来虚拟试穿服装的在线平台。它通过先进的计算机视觉算法和生成对抗网络(GANs)技术,为用户提供逼真的服装试穿效果。该产品不仅改变了传统的试衣体验,还为时尚博主、服装零售商、个人造型师等提供了创新的内容创作和展示方式。它的优势在于能够提供即时的试穿效果,多样化的服装选择,以及真实感的渲染效果,同时保护用户隐私,支持个性化的服装试穿体验。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
提升户外虚拟试穿效果的模型训练代码库
BooW-VTON是一个专注于提升户外虚拟试穿效果的研究项目,通过无需掩码的伪数据训练来增强虚拟试穿技术。该技术的重要性在于它能够改善在自然环境下服装试穿的真实感和准确性,对于时尚电商和虚拟现实领域具有重要意义。产品背景信息显示,该项目是基于深度学习技术的图像生成模型,旨在解决传统虚拟试穿中服装与人体融合不自然的问题。目前该项目是免费开源的,定位于研究和开发阶段。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
虚拟试穿应用,通过WhatsApp发送图片试穿服装
这是一个使用Flask、Twilio的WhatsApp API和Gradio的虚拟试穿模型构建的虚拟试穿原型应用。用户可以通过WhatsApp发送图片来虚拟试穿服装,并将结果发送回用户。该应用利用了Twilio Sandbox进行WhatsApp消息的发送和接收,以及Gradio API来处理虚拟试穿模型,为用户提供了一个创新的在线购物体验。
多件服装虚拟试穿和编辑技术
M&M VTO是一种混合搭配的虚拟试穿方法,它接受多张服装图片、服装布局的文本描述以及一个人的图片作为输入,输出是这些服装在指定布局下穿在给定人物身上的可视化效果。该技术的主要优点包括:单阶段扩散模型,无需超分辨率级联,能够在1024x512分辨率下混合搭配多件服装,同时保留和扭曲复杂的服装细节;架构设计(VTO UNet Diffusion Transformer)能够分离去噪和人物特定特征,实现高效的身份保留微调策略;通过文本输入控制多件服装的布局,专门针对虚拟试穿任务微调。M&M VTO在定性和定量方面都达到了最先进的性能,并为通过语言引导和多件服装试穿开辟了新的可能性。
超高质量虚拟试穿,适用于任何服装和人物
Outfit Anyone 是一款超高质量虚拟试穿产品,使用户能够在不真实试穿衣物的情况下尝试不同的时尚款式。通过采用两个流的条件扩散模型,Outfit Anyone 能够灵活处理衣物变形,生成更逼真的效果。它具备可扩展性,可以调整姿势和身体形状等因素,适用于动漫角色到真实人物的图像。Outfit Anyone 在各种场景下的表现突出了其实用性和准备好投入实际应用的程度。
一种用于虚拟试穿任务的扩散模型,特别在真实世界场景中提高图像保真度和细节保存。
IDM-VTON是一种新型的扩散模型,用于基于图像的虚拟试穿任务,它通过结合视觉编码器和UNet网络的高级语义以及低级特征,生成具有高度真实感和细节的虚拟试穿图像。该技术通过提供详细的文本提示,增强了生成图像的真实性,并通过定制方法进一步提升了真实世界场景下的保真度和真实感。
OOTDiffusion是一个高度可控的虚拟服装试穿开源工具
OOTDiffusion是一个基于潜在扩散模型的虚拟服装试穿开源工具。它支持半身和全身两种模型,可以实现服装的自然融合。用户可以通过调节各种参数实现对试穿效果的精确控制,满足不同的需求。该工具开源在GitHub上,已获得超过300星的关注。
使用AI技术在任何电商平台虚拟试穿衣物。
Visual Try-On Chrome Extension是一款Chrome浏览器插件,利用人工智能图像处理技术,让用户能够在任何电子商务网站上虚拟试穿衣物。该插件通过OpenAI GPT-4捕捉产品主图,上传用户图片至Cloudinary,使用Hugging Face上的Kolors模型进行AI处理,并将结果存储在浏览器缓存中以提高可用性。它保护用户隐私,不将个人数据或图片发送至服务器,仅在Hugging Face进行AI处理时例外。
免费的惊艳虚拟换装工具
Kolors虚拟试妆AI是一种创新的人工智能技术,它允许用户在不实际穿着的情况下虚拟试穿衣服。用户可以通过上传个人照片和所需衣物的图像,AI会生成用户穿着所选服装的真实可视化效果。这项技术不仅为用户带来了便利,使他们能够从舒适的家中尝试不同的风格,而且还通过提供个性化的时尚体验来提高购物体验的准确性和效率。对于服装零售商来说,Kolors虚拟试穿AI提供了对用户试穿数据的深入分析,使他们能够了解市场趋势和消费者偏好,从而优化产品线和营销策略。
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
一款简单高效的虚拟试穿扩散模型。
CatVTON是一款基于扩散模型的虚拟试穿技术,具有轻量级网络(总共899.06M参数)、参数高效训练(49.57M可训练参数)和简化推理(1024X768分辨率下<8G VRAM)。它通过简化的网络结构和推理过程,实现了快速且高效的虚拟试穿效果,特别适合时尚行业和个性化推荐场景。
AI风格助手,提供智能时尚推荐和虚拟试穿,帮助改变穿衣风格。
DripChecked是一款AI风格助手,利用人工智能技术为用户提供智能时尚推荐、虚拟试穿等功能,帮助用户改变穿衣风格。该产品背景信息丰富,价格适中,定位于个人时尚风格改善。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
深度学习工具链,用于生成你的数字孪生体。
FaceChain是一个深度学习工具链,由ModelScope提供支持,能够通过至少1张肖像照片生成你的数字孪生体,并在不同设置中生成个人肖像(支持多种风格)。用户可以通过FaceChain的Python脚本、熟悉的Gradio界面或sd webui来训练数字孪生模型并生成照片。FaceChain的主要优点包括其生成个性化肖像的能力,支持多种风格,以及易于使用的界面。
一款基于深度学习的在线图像抠图工具
image-matting是一个基于深度学习的在线图像抠图工具,能够实现人像及通用场景下的图像抠图,可提取图像中的主体物体并输出对应的背景图、前景图及遮罩。该工具使用了模型堂的cv_unet_image-matting和cv_unet_universal-matting模型,实现了高质量的图像抠图效果。该工具提供了简单便捷的在线抠图体验,支持图片上传抠图及URL抠图两种方式,可广泛应用于图像编辑、电商平台中的人像处理等场景中。
可控人物图像生成模型
Leffa是一个用于可控人物图像生成的统一框架,它能够精确控制人物的外观(例如虚拟试穿)和姿态(例如姿态转移)。该模型通过在训练期间引导目标查询关注参考图像中的相应区域,减少细节扭曲,同时保持高图像质量。Leffa的主要优点包括模型无关性,可以用于提升其他扩散模型的性能。
视频虚拟试穿技术
ViViD是一个利用扩散模型进行视频虚拟试穿的新框架。它通过设计服装编码器提取精细的服装语义特征,并引入轻量级姿态编码器以确保时空一致性,生成逼真的视频试穿效果。ViViD收集了迄今为止规模最大、服装类型最多样化、分辨率最高的视频虚拟试穿数据集。
领先的虚拟试穿技术,改变时尚活动和消费者体验。
FASHN 是一种创新的虚拟试穿技术,旨在帮助时尚行业提升客户体验与市场推广效率。通过 FASHN,用户可以快速生成虚拟试穿效果,帮助设计师、品牌及零售商更好地展示服装。该平台支持无需复杂训练即可使用,适合各种规模的时尚企业,助力他们在竞争激烈的市场中脱颖而出。
AI服装搭配生成器,上传照片即可试穿数不尽时尚服装。
OutfitAI是一款AI服装搭配生成器,利用虚拟试衣技术帮助用户快速浏览各种时尚服装,适用于时尚购物。该产品的主要优点在于提供虚拟试穿功能,节省购物时间并帮助用户发现新款式。定位于时尚爱好者和购物者。
使用线条生成深度风格图像
Line2Depth SD 1.5是一个模型,可以利用像Canny、线条、Softedge等控制网络,仅通过线条创建具有深度感的图像。在提示中添加'depth, 3d'。Lora文件名后的数字表示合并的Lora数量,每个将产生不同的结果,因此请选择一个效果较好的。
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
OMG是一个基于深度学习的图像超分辨率工具
OMG(Once More Generalization)是一个开源的图像超分辨率工具,它利用深度学习技术来提高图像的分辨率。该项目旨在通过AI模型增强图像质量,使其在放大后仍然保持清晰和细腻。
虚拟试穿、物体移动
AnyDoor 是一种基于扩散的图像生成器,可以在用户指定的位置将目标对象以和谐的方式传送到新场景中。我们的模型只需要训练一次,就可以轻松推广到不同的对象和场景组合中,无需为每个对象调整参数。为了充分描述某个特定对象,我们除了使用常用的身份特征外,还补充了细节特征,这些特征经过精心设计,既能保持纹理细节,又能允许多样的局部变化(如光照、方向、姿势等),从而使对象与不同的环境更好地融合。我们还提出从视频数据集中借用知识的方法,在视频数据集中可以观察到同一对象的各种形态(沿时间轴),从而增强模型的泛化能力和鲁棒性。大量实验证明了我们方法的优越性,以及它在虚拟试穿和物体移动等实际应用中的巨大潜力。
一种通过视觉上下文学习的通用图像生成框架。
VisualCloze 是一个通过视觉上下文学习的通用图像生成框架,旨在解决传统任务特定模型在多样化需求下的低效率问题。该框架不仅支持多种内部任务,还能泛化到未见过的任务,通过可视化示例帮助模型理解任务。这种方法利用了先进的图像填充模型的强生成先验,为图像生成提供了强有力的支持。
© 2025 AIbase 备案号:闽ICP备08105208号-14