浏览量:80
最新流量情况
月访问量
2966
平均访问时长
00:00:00
每次访问页数
1.10
跳出率
47.23%
流量来源
直接访问
48.51%
自然搜索
27.87%
邮件
0.07%
外链引荐
5.88%
社交媒体
16.31%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
澳大利亚
0.45%
意大利
6.75%
美国
92.80%
AI数据映射,秒速创建数据管道
Lume AI提供AI数据映射服务,可快速创建和维护数据管道,实现秒速数据映射。其主要功能包括自动化数据映射、数据管道可视化管理、数据摄入扩展、遗留数据规范化、快速构建数据管道、自动维护映射、解决复杂数据映射问题等。该产品定位于为企业提供智能化、高效的数据处理解决方案。
从合成数据中学习视觉表示模型
该代码仓库包含从合成图像数据(主要是图片)进行学习的研究,包括StableRep、Scaling和SynCLR三个项目。这些项目研究了如何利用文本到图像模型生成的合成图像数据进行视觉表示模型的训练,并取得了非常好的效果。
ChatGPT 数据与分析是一个全面的资源、材料和指南目录,旨在帮助您掌握人工智能的艺术。
ChatGPT 数据与分析是一个包含资源、材料和指南的综合目录,涵盖了与 ChatGPT 相关的内容。该目录旨在帮助您提高 AI 技能。本书提供了 ChatGPT 的提示,可帮助您释放创造力,提高工作效率。提示清晰简明。本目录中的所有材料都经过精心策划,确保来源可靠和权威,为您提供高质量的信息和指导。
用于高效表示复杂时空信号的残差神经场
ResFields是一类专门设计用于有效表示复杂时空信号的网络。它将时变权重引入多层感知机中,利用可训练的残差参数增强了模型的表达能力。该方法可以无缝集成到现有技术中,并可显著提高各种具有挑战性的任务的结果,如2D视频逼近、动态形状建模和动态NeRF重建等。
生成计算机视觉的合成数据集
Datagen是一个可通过平台或API访问的合成图像数据集,可根据需要生成逼真的全身人像和人与物体在不同环境中互动的场景。用户可以通过代码对单个参数进行完全控制,实现人类中心数据集的设计和生成。
javascript神经网络库
Synaptic是一个开源的javascript神经网络库,提供了基本的神经元、网络、训练器和网络构建工具。它可以用于构建和训练各种类型的神经网络,如感知机、长短时记忆网络(LSTM)、液态状态机和Hopfield网络。Synaptic还提供了一些示例和演示,帮助用户学习和使用神经网络。
学习野外音频视觉数据的机器人操控
ManiWAV是一个研究项目,旨在通过野外的音频和视觉数据学习机器人操控技能。它通过收集人类演示的同步音频和视觉反馈,并通过相应的策略接口直接从演示中学习机器人操控策略。该模型展示了通过四个接触丰富的操控任务来证明其系统的能力,这些任务需要机器人被动地感知接触事件和模式,或主动地感知物体表面的材料和状态。此外,该系统还能够通过学习多样化的野外人类演示来泛化到未见过的野外环境中。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
大规模实景数据集,用于深度学习三维视觉研究
DL3DV-10K是一个包含超过10000个高质量视频的大规模实景数据集,每个视频都经过人工标注场景关键点和复杂程度,并提供相机姿态、NeRF估计深度、点云和3D网格等。该数据集可用于通用NeRF研究、场景一致性跟踪、视觉语言模型等计算机视觉研究。
日志和可视化计算机视觉数据
Rerun是一个用于记录计算机视觉和机器人数据的SDK,配有可视化工具,用于随时间查看和调试数据。它可以帮助您以最少的代码调试和理解系统的内部状态和数据。Rerun提供灵活、快速和可移植的功能,适用于实时应用和数据探索。
神经网络扩散模型实现
Neural Network Diffusion是由新加坡国立大学高性能计算与人工智能实验室开发的神经网络扩散模型。该模型利用扩散过程生成高质量的图像,适用于图像生成和修复等任务。
编码器自由的视觉-语言模型,高效且数据驱动。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
生成精确的视觉 AI 模型,用成本效益的数据
syntheticAIdata 是一个平台,可以快速生成大规模的合成数据集,用于训练视觉 AI 模型。通过使用 syntheticAIdata,您可以轻松生成大量的合成数据集,从而显著加快图像分类、图像分割和目标检测等任务的视觉 AI 模型训练速度。我们的解决方案将帮助您更快地将基于 AI 的应用推向市场。syntheticAIdata 得到了 Microsoft for Startups 的支持,并成为 NVIDIA Inception 计划的一部分。
数据标注外包服务,为计算机视觉或自然语言处理模型提供数据标注和标签
为什么选择 Innovatiana 进行数据标注外包?Innovatiana 是一家致力于为您的人工智能需求提供有意义和有影响力的外包服务的公司。我们在马达加斯加招聘并培训我们自己的数据标注团队,为他们提供公平的薪水、良好的工作条件和职业发展机会。我们拒绝使用众包实践,为您提供有意义和有影响力的外包服务,并透明地提供用于人工智能的数据来源。我们的任务由一位英语或法语经理负责,以实现紧密的管理和沟通。我们提供灵活的价格,根据您的需求和预算定价。我们重视数据的安全性和机密性,并采取最佳的信息安全实践来保护数据。我们的数据标注专家经过专业培训,为您提供高质量的标注数据,用于培训您的人工智能模型。
用神经网络预测你的涂鸦速度有多快
Doodle Dash 是一个趣味的在线游戏,它使用神经网络来预测玩家涂鸦的速度。玩家可以在游戏中尽可能快地画出指定的涂鸦,神经网络会根据你的画速给出预测结果。这个游戏基于🤗 Transformers.js 开发。
在线图像集合的神经渲染
NeROIC是一种从在线图像集合中获取物体表示的新方法,可以捕捉具有不同相机、光照和背景的照片中任意物体的高质量几何和材质属性。它可以用于新视角合成、重新照明和和谐背景合成等物体中心渲染应用。通过扩展神经辐射场的多阶段方法,我们首先推断表面几何并改进粗略估计的初始相机参数,同时利用粗略的前景物体掩码来提高训练效率和几何质量。我们还引入了一种稳健的法线估计技术,可以消除几何噪声的影响,同时保留关键细节。最后,我们提取表面材质属性和环境光照,用球谐函数表示,并处理瞬态元素,如锐利阴影。这些组件的结合形成了一个高度模块化和高效的物体获取框架。广泛的评估和比较证明了我们的方法在捕捉用于渲染应用的高质量几何和外观属性方面的优势。
神经模型驱动的实时游戏引擎
GameNGen是一个完全由神经模型驱动的游戏引擎,能够实现与复杂环境的实时互动,并在长时间轨迹上保持高质量。它能够以每秒超过20帧的速度交互式模拟经典游戏《DOOM》,并且其下一帧预测的PSNR达到29.4,与有损JPEG压缩相当。人类评估者在区分游戏片段和模拟片段方面仅略优于随机机会。GameNGen通过两个阶段的训练:(1)一个RL-agent学习玩游戏并记录训练会话的动作和观察结果,成为生成模型的训练数据;(2)一个扩散模型被训练来预测下一帧,条件是过去的动作和观察序列。条件增强允许在长时间轨迹上稳定自回归生成。
无代码搭建目标检测神经网络
MakeML是一个无需编写任何代码就可以搭建图像目标检测神经网络的开发工具。它提供了一个简单易用的图形界面,用户只需上传训练集图片,绘制bounding box,设置参数,就可以训练出一个高效的目标检测模型,并导出成CoreML格式在iOS App中使用。MakeML解决了神经网络开发门槛高的痛点,不需要任何机器学习或编程知识,就可以获得强大的深度学习能力。
快速神经风格迁移的ComfyUI节点
ComfyUI-Fast-Style-Transfer是一个基于PyTorch框架开发的快速神经风格迁移插件,它允许用户通过简单的操作实现图像的风格转换。该插件基于fast-neural-style-pytorch项目,目前只移植了基础的推理功能。用户可以自定义风格,通过训练自己的模型来实现独特的风格迁移效果。
构建计算机视觉应用的全方位AI视觉平台
Datature是一个全方位的AI视觉平台,帮助团队和企业快速构建计算机视觉应用,无需编码。它提供了管理数据集、标注、训练和部署的功能。Datature的主要功能包括数据集管理、数据标注工具、模型训练、模型部署等。其优势在于提供了一站式解决方案,让团队和企业能够高效地开发和部署计算机视觉应用。定价方面,请访问官方网站获取详细信息。
从视频中推断混合神经流体场
HyFluid是一种从稀疏多视角视频中推断流体密度和速度场的神经方法。与现有的神经动力学重建方法不同,HyFluid能够准确估计密度并揭示底层速度,克服了流体速度的固有视觉模糊性。该方法通过引入一组基于物理的损失来实现推断出物理上合理的速度场,同时处理流体速度的湍流性质,设计了一个混合神经速度表示,包括捕捉大部分无旋能量的基础神经速度场和模拟剩余湍流速度的涡粒子速度。该方法可用于各种围绕3D不可压缩流的学习和重建应用,包括流体再模拟和编辑、未来预测以及神经动态场景合成。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
基于深度推理的神经机器翻译模型
DRT-o1-7B是一个致力于将长思考推理成功应用于神经机器翻译(MT)的模型。该模型通过挖掘适合长思考翻译的英文句子,并提出了一个包含翻译者、顾问和评估者三个角色的多代理框架来合成MT样本。DRT-o1-7B和DRT-o1-14B使用Qwen2.5-7B-Instruct和Qwen2.5-14B-Instruct作为骨干网络进行训练。该模型的主要优点在于其能够处理复杂的语言结构和深层次的语义理解,这对于提高机器翻译的准确性和自然性至关重要。
Nerfstudio是一个模块化的神经辐射场开发框架
Nerfstudio是一个开源的神经辐射场(NeRF)开发框架,它提供了简单易用的API,支持模块化的NeRF构建和训练。Nerfstudio帮助用户更轻松地理解和探索NeRF技术,并提供了教程、文档和更多学习资源。欢迎用户贡献新的NeRF模型和数据集。Nerfstudio的主要功能包括模型训练、数据处理、可视化等。
人形机器人多功能神经全身控制器
HOVER是一个针对人形机器人的多功能神经全身控制器,它通过模仿全身运动来提供通用的运动技能,学习多种全身控制模式。HOVER通过多模式策略蒸馏框架将不同的控制模式整合到一个统一的策略中,实现了在不同控制模式之间的无缝切换,同时保留了每种模式的独特优势。这种控制器提高了人形机器人在多种模式下的控制效率和灵活性,为未来的机器人应用提供了一个健壮且可扩展的解决方案。
无代码、无数据AutoML平台,轻松定制视觉模型
Remyx AI是一个无代码、无数据的AutoML平台,可快速定制视觉模型。它提供了简单易用的UI界面和API接口,让任何人都能轻松创建定制化的视觉模型。通过Remyx AI,你可以训练并下载一个新模型,只需点击几下或几行代码即可完成。定制完成后,你可以下载模型并在任何需要的地方使用。模型存储为开放格式,便于快速集成到你的应用中。
使用单眼视频记录产生实时4D头像合成的神经网络方法
BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。
© 2025 AIbase 备案号:闽ICP备08105208号-14