需求人群:
["2D视频逼近","动态形状建模","动态NeRF重建"]
使用场景示例:
用于视频压缩和重建
用于动态3D场景的建模和渲染
用于时变3D数据的捕捉和重建
产品特色:
将时变权重引入多层感知机中
利用可训练的低秩残差参数增强模型的表达能力
无缝兼容现有的MLP网络,保持推理和训练速度
提高模型的泛化能力
可广泛应用于各种MLP网络表示的时空信号
浏览量:3
用于高效表示复杂时空信号的残差神经场
ResFields是一类专门设计用于有效表示复杂时空信号的网络。它将时变权重引入多层感知机中,利用可训练的残差参数增强了模型的表达能力。该方法可以无缝集成到现有技术中,并可显著提高各种具有挑战性的任务的结果,如2D视频逼近、动态形状建模和动态NeRF重建等。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
Transformer Debugger是由OpenAI的Superalignment团队开发的用于调查小型语言模型特定行为的工具
Transformer Debugger结合了自动化可解释性和稀疏自编码器技术,支持在编写代码之前进行快速探索,并能够在前向传递中进行干预,以观察其如何影响特定行为。它通过识别对行为有贡献的特定组件(神经元、注意力头、自编码器潜在表示),展示自动生成的解释来说明这些组件为何强烈激活,并追踪组件间的连接以帮助发现电路。
机器人图像渲染的新发展
Wild2Avatar是一个用于渲染被遮挡的野外单目视频中的人类外观的神经渲染方法。它可以在真实场景下渲染人类,即使障碍物可能会阻挡相机视野并导致部分遮挡。该方法通过将场景分解为三部分(遮挡物、人类和背景)来实现,并使用特定的目标函数强制分离人类与遮挡物和背景,以确保人类模型的完整性。
无代码搭建目标检测神经网络
MakeML是一个无需编写任何代码就可以搭建图像目标检测神经网络的开发工具。它提供了一个简单易用的图形界面,用户只需上传训练集图片,绘制bounding box,设置参数,就可以训练出一个高效的目标检测模型,并导出成CoreML格式在iOS App中使用。MakeML解决了神经网络开发门槛高的痛点,不需要任何机器学习或编程知识,就可以获得强大的深度学习能力。
美图公司推出的AI服务平台
美图AI开放平台专注于人脸技术、人体技术、图像识别、图像处理、图像生成等核心领域,为客户提供经市场验证的专业AI算法服务和解决方案。平台提供人脸技术、人体技术、图像识别、图像处理、图像生成等多种图像AI服务,支持Web API、Mobile SDK等多种接入方式,可应用于企业服务、美妆门店、医疗美容、智能硬件等多个行业场景,帮助企业快速进行图像AI能力打通和应用。
OLAMI是一个人工智能开放平台
OLAMI是一个提供云端API、管理界面、多元机器感知解决方案的人工智能软件开发平台。OLAMI平台具有语音识别、自然语言理解、对话管理、语音合成等语音AI技术,以及图像识别、语义理解等视觉AI技术,可以轻松地为产品加入人工智能,提升用户体验。
基于Segment-Anything-2和Segment-Anything-1的自动全视频分割工具
AutoSeg-SAM2是一个基于Segment-Anything-2(SAM2)和Segment-Anything-1(SAM1)的自动全视频分割工具,它能够对视频中的每个对象进行追踪,并检测可能的新对象。该工具的重要性在于它能够提供静态分割结果,并利用SAM2对这些结果进行追踪,这对于视频内容分析、对象识别和视频编辑等领域具有重要意义。产品背景信息显示,它是由zrporz开发的,并且是基于Facebook Research的SAM2和zrporz自己的SAM1。价格方面,由于这是一个开源项目,因此它是免费的。
利用大规模机器学习理解场景并连接全球数百万场景的地理空间模型
Niantic的Large Geospatial Model (LGM) 是一个先锋概念,旨在通过大规模机器学习理解场景并将其与全球数百万其他场景连接起来。LGM不仅使计算机能够感知和理解物理空间,还能以新的方式与它们互动,成为AR眼镜及更广泛领域(包括机器人技术、内容创作和自主系统)的关键组成部分。随着我们从手机转向与现实世界相连的可穿戴技术,空间智能将成为世界未来的操作系统。
一站式OCR代理,快速从图像中生成洞见。
TurboLens是一个集OCR、计算机视觉和生成式AI于一体的全功能平台,它能够自动化地从非结构化图像中快速生成洞见,简化工作流程。产品背景信息显示,TurboLens旨在通过其创新的OCR技术和AI驱动的翻译及分析套件,从印刷和手写文档中提取定制化的洞见。此外,TurboLens还提供了数学公式和表格识别功能,将图像转换为可操作的数据,并将数学公式翻译成LaTeX格式,表格转换为Excel格式。产品价格方面,TurboLens提供免费和付费两种计划,满足不同用户的需求。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
使用先进计算机视觉算法进行自动、准确计数的应用。
CountAnything是一个前沿应用,利用先进的计算机视觉算法实现自动、准确的物体计数。它适用于多种场景,包括工业、养殖业、建筑、医药和零售等。该产品的主要优点在于其高精度和高效率,能够显著提升计数工作的准确性和速度。产品背景信息显示,CountAnything目前已开放给非中国大陆地区用户使用,并且提供免费试用。
利用NVIDIA AI构建视频搜索和摘要代理
NVIDIA AI Blueprint for Video Search and Summarization是一个基于NVIDIA NIM微服务和生成式AI模型的参考工作流程,用于构建能够理解自然语言提示并执行视觉问题回答的视觉AI代理。这些代理可以部署在工厂、仓库、零售店、机场、交通路口等多种场景中,帮助运营团队从自然交互中生成的丰富洞察中做出更好的决策。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
人形机器人多功能神经全身控制器
HOVER是一个针对人形机器人的多功能神经全身控制器,它通过模仿全身运动来提供通用的运动技能,学习多种全身控制模式。HOVER通过多模式策略蒸馏框架将不同的控制模式整合到一个统一的策略中,实现了在不同控制模式之间的无缝切换,同时保留了每种模式的独特优势。这种控制器提高了人形机器人在多种模式下的控制效率和灵活性,为未来的机器人应用提供了一个健壮且可扩展的解决方案。
从单张图片或文本提示生成高质量3D资产
Flex3D是一个两阶段流程,能够从单张图片或文本提示生成高质量的3D资产。该技术代表了3D重建领域的最新进展,可以显著提高3D内容的生成效率和质量。Flex3D的开发得到了Meta的支持,并且团队成员在3D重建和计算机视觉领域有着深厚的背景。
多物种鲸鱼声音检测工具
multispecies-whale-detection 是谷歌开发的一个开源项目,旨在通过神经网络检测和分类不同物种和地理区域的鲸鱼声音。这个工具可以帮助研究人员和环保组织更好地理解和保护海洋生物多样性。
一个全面的AI神经网络工具目录
AILIBRI是一个汇集了超过2000个AI神经网络工具的目录网站,涵盖了文本、图像、视频、音频等多个领域的工具。它为用户寻找合适的AI工具提供了极大的便利,无论是专业人士还是初学者,都能在这里找到满足其需求的工具。该网站提供了详细的分类和搜索功能,帮助用户快速定位到所需的工具。
去除镜面反射,揭示隐藏纹理
StableDelight是一个先进的模型,专注于从纹理表面去除镜面反射。它基于StableNormal的成功,后者专注于提高单目法线估计的稳定性。StableDelight通过应用这一概念来解决去除反射的挑战性任务。训练数据包括Hypersim、Lumos以及来自TSHRNet的各种镜面高光去除数据集。此外,我们在扩散训练过程中整合了多尺度SSIM损失和随机条件尺度技术,以提高一步扩散预测的清晰度。
一种在野外环境中分解图像为反射率和照明效果的技术。
Colorful Diffuse Intrinsic Image Decomposition 是一种图像处理技术,它能够将野外拍摄的照片分解为反照率、漫反射阴影和非漫反射残留部分。这项技术通过逐步移除单色照明和Lambertian世界假设,实现了对图像中多彩漫反射阴影的估计,包括多个照明和场景中的二次反射,同时模型了镜面反射和可见光源。这项技术对于图像编辑应用,如去除镜面反射和像素级白平衡,具有重要意义。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
OpenCV的额外模块库,用于开发和测试新的图像处理功能。
opencv_contrib是OpenCV的额外模块库,用于开发和测试新的图像处理功能。这些模块通常在API稳定、经过充分测试并被广泛接受后,才会被整合到OpenCV的核心库中。该库允许开发者使用最新的图像处理技术,推动计算机视觉领域的创新。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
基于重力视角坐标恢复世界定位的人体运动
GVHMR是一种创新的人体运动恢复技术,它通过重力视角坐标系统来解决从单目视频中恢复世界定位的人体运动的问题。该技术能够减少学习图像-姿态映射的歧义,并且避免了自回归方法中连续图像的累积误差。GVHMR在野外基准测试中表现出色,不仅在准确性和速度上超越了现有的最先进技术,而且其训练过程和模型权重对公众开放,具有很高的科研和实用价值。
构建大型世界模型,感知、生成和与3D世界互动
World Labs 是一家专注于空间智能的公司,致力于构建大型世界模型(Large World Models),以感知、生成和与3D世界进行互动。公司由AI领域的知名科学家、教授、学者和行业领导者共同创立,包括斯坦福大学的Fei-Fei Li教授、密歇根大学的Justin Johnson教授等。他们通过创新的技术和方法,如神经辐射场(NeRF)技术,推动了3D场景重建和新视角合成的发展。World Labs 得到了包括Marc Benioff、Jim Breyer等知名投资者的支持,其技术在AI领域具有重要的应用价值和商业潜力。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
云端AI开发平台,助力高效创新。
SambaNova是一个云端AI开发平台,提供了一系列工具和资源,旨在帮助开发者和企业快速构建、测试和部署AI应用。平台通过提供高性能的计算资源、丰富的API接口和易于使用的AI Starter Kits,使得AI开发变得更加高效和便捷。
© 2024 AIbase 备案号:闽ICP备08105208号-14