需求人群:
"automcp 特别适合需要快速开发和部署 AI 代理的开发者和团队。无论是希望在项目中集成现有的 AI 工具,还是构建新的 AI 应用,automcp 都能提供强大的支持。其简化的工作流程和灵活的配置选项使得开发者可以专注于创新,而不必担心底层实现的复杂性。"
使用场景示例:
使用 automcp 将 CrewAI 框架中的工具转换为 MCP 服务器,方便与其他服务集成。
通过 automcp 部署 LangGraph 的 AI 代理,使其能通过标准化接口提供服务。
利用 automcp 快速搭建 Llama Index 的 MCP 服务器,帮助开发团队实现快速原型开发。
产品特色:
支持多种代理框架:可以将 CrewAI、LangGraph、Llama Index 等多种代理框架转换为 MCP 服务器。
CLI 界面:提供易于使用的命令行工具,简化了服务器的生成和管理。
快速部署:通过简化的配置过程,开发者可以迅速启动和运行 MCP 服务器。
输入模式定义:允许用户定义输入模式,以便于与代理进行交互。
环境变量配置:支持使用环境变量来管理 API 密钥等敏感信息。
支持多种传输模式:可以选择 STDIO 或 SSE 传输模式,根据使用场景灵活调整。
自动生成文件:运行命令后会自动生成配置文件,减少手动配置的复杂性。
社区支持:开源项目,用户可以在 GitHub 上提交问题和贡献代码。
使用教程:
安装 automcp:使用命令 pip install naptha-automcp 进行安装。
初始化项目:在项目目录中运行命令 automcp init -f < 框架 > 来生成 MCP 服务器文件。
编辑 run_mcp.py 文件:根据需要配置代理类和输入模式。
安装依赖:确保所有必要的依赖项都已安装。
运行服务器:使用 automcp serve -t < 传输模式 > 启动 MCP 服务器。
浏览量:167
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
轻松将现有代理框架中的工具、代理和调度器转换为 MCP 服务器。
automcp 是一个开源工具,旨在简化将各种现有代理框架(如 CrewAI、LangGraph 等)转换为 MCP 服务器的过程。这使得开发者可以通过标准化接口更容易地访问这些服务器。该工具支持多种代理框架的部署,并且通过易于使用的 CLI 界面进行操作。适合需要快速集成和部署 AI 代理的开发者,价格免费,适合个人和团队使用。
MCP服务器目录,汇集多个MCP服务器资源。
MCP Directory是一个为MCP服务器提供目录服务的网站,它允许用户发现和共享MCP服务器资源。该网站使用TypeScript开发,并且提供了一个友好的用户界面,方便用户快速找到所需的MCP服务器。它的重要性在于为MCP服务器用户提供了一个集中的平台,促进了资源共享和技术交流。
mcp-use 是与 MCP 工具交互的最简单方式,支持自定义代理。
mcp-use 是一个开源的 MCP 客户端库,旨在帮助开发者将任何大型语言模型(LLM)连接到 MCP 工具,构建具有工具访问能力的自定义代理,而无需使用闭源或应用程序客户端。该产品提供了简单易用的 API 和强大的功能,可以应用于多个领域。
MCP-Scan 是一个针对 MCP 服务器的安全扫描工具。
MCP-Scan 是一款专门为 MCP 服务器设计的安全扫描工具,能够检测常见的安全漏洞,如提示注入和工具中毒。它通过检查配置文件和工具描述,帮助用户确保系统的安全性,适用于各种开发者和系统管理员,是维护系统安全的重要工具。
易用、灵活、高效的开源大模型应用开发框架。
Agently是一个开源的大模型应用开发框架,旨在帮助开发者快速构建基于大语言模型的AI agent原生应用。它通过提供一系列工具和接口,简化了与大型语言模型的交互过程,使得开发者可以更专注于业务逻辑的实现。Agently框架支持多种模型,易于安装和配置,具有高度的灵活性和扩展性。
Cradle框架:用于控制计算机的多模态代理
Cradle框架旨在使基础模型能够通过与人类相同的通用接口(屏幕作为输入,键盘和鼠标操作作为输出)执行复杂的计算机任务。该框架在Red Dead Redemption II游戏中进行了案例研究,展示了其在复杂环境中的泛化和适应能力。
开源本地RAG,集成ChatGPT和MCP能力
Minima是一个开源的、完全本地化的RAG(Retrieval-Augmented Generation)模型,具备与ChatGPT和MCP(Model Context Protocol)集成的能力。它支持三种模式:完全本地安装、通过ChatGPT查询本地文档以及使用Anthropic Claude查询本地文件。Minima的主要优点包括本地化处理数据,保护隐私,以及能够利用强大的语言模型来增强检索和生成任务。产品背景信息显示,Minima支持多种文件格式,并允许用户自定义配置以适应不同的使用场景。Minima是免费开源的,定位于需要本地化AI解决方案的开发者和企业。
全球MCP服务器集合平台
MCP Servers是一个集合了全球各种MCP服务器的平台,提供了查询和汇总聊天消息、使用Brave搜索API进行网络和本地搜索、操作Git仓库、AI图像生成、从Sentry.io获取和分析问题等多种功能。这些服务器支持开发者和企业在不同领域中实现自动化和智能化,提高效率和创新能力。MCP Servers平台以其丰富的功能和广泛的应用场景,成为编程领域中的重要工具。
开源的深度研究工具,旨在通过开源框架复现类似Deep Research的功能
Open-source DeepResearch 是一个开源项目,旨在通过开源的框架和工具复现类似 OpenAI Deep Research 的功能。该项目基于 Hugging Face 平台,利用开源的大型语言模型(LLM)和代理框架,通过代码代理和工具调用实现复杂的多步推理和信息检索。其主要优点是开源、可定制性强,并且能够利用社区的力量不断改进。该项目的目标是让每个人都能在本地运行类似 DeepResearch 的智能代理,使用自己喜爱的模型,并且完全本地化和定制化。
一个简单的代理框架,支持浏览器使用、深度研究等功能。
Minion Agent 是一个简单而强大的代理框架,能够与浏览器交互,支持深度研究、自动规划等功能,适用于需要进行复杂任务和研究的用户。它提供了一种灵活的工具集,使开发者能够轻松集成不同的模型和工具。该框架不仅提高了工作的效率,还为用户提供了便捷的使用体验,适合各类科研和商业应用。该产品是开源的,用户可以自由使用和修改。
将 MCP 集成到 ChatGPT 等 AI 平台的 Chrome 扩展。
MCP SuperAssistant 是一个 Chrome 扩展,集成了模型上下文协议(MCP)工具,使用户能够直接从 AI 平台执行 MCP 工具,并将结果插入对话中。这项技术提高了基于 Web 的 AI 助手的功能,支持多种 AI 平台,为用户提供便捷的数据交互方式。
开源框架,支持数据驱动的自适应语言代理。
aiwaves-cn/agents 是一个开源框架,专注于数据驱动的自适应语言代理。它提供了一种系统化框架,通过符号学习训练语言代理,灵感来源于用于训练神经网络的连接主义学习过程。该框架实现了反向传播和基于梯度的权重更新,使用基于语言的损失、梯度和权重,支持多代理系统的优化。
TypeScript框架,优雅构建MCP服务器
LiteMCP是一个TypeScript框架,用于优雅地构建MCP(Model Context Protocol)服务器。它支持简单的工具、资源、提示定义,提供完整的TypeScript支持,并内置了错误处理和CLI工具,方便测试和调试。LiteMCP的出现为开发者提供了一个高效、易用的平台,用于开发和部署MCP服务器,从而推动了人工智能和机器学习模型的交互和协作。LiteMCP是开源的,遵循MIT许可证,适合希望快速构建和部署MCP服务器的开发者和企业使用。
HuggingFace的全新AI代理框架,助力开发者轻松创建强大AI代理。
Smolagents是Hugging Face团队开发的极简AI代理框架,旨在让开发者仅用少量代码就能部署强大的代理。它专注于代码代理,即代理通过编写和执行Python代码片段来执行任务,而非生成JSON或文本块。这种模式利用了大型语言模型(LLMs)生成和理解代码的能力,提供了更好的组合性、灵活性以及丰富的训练数据利用,能高效处理复杂逻辑和对象管理。Smolagents与Hugging Face Hub深度集成,便于工具的分享和加载,促进社区协作。此外,它还支持传统工具调用代理,兼容多种LLMs,包括Hugging Face Hub上的模型以及OpenAI、Anthropic等通过LiteLLM集成的模型。Smolagents的出现,降低了AI代理开发的门槛,使开发者能够更便捷地构建和部署AI驱动的应用程序。
一个零配置工具,可自动将FastAPI端点暴露为模型上下文协议(MCP)工具
FastAPI-MCP是一个专为FastAPI设计的工具,旨在无缝集成模型上下文协议(MCP)。它允许开发者无需任何配置即可将FastAPI应用程序的API端点自动转换为MCP工具。该工具的主要优点是简化了API与MCP的集成过程,支持自动发现和转换所有FastAPI端点,保留请求和响应模型的模式,并保持与Swagger相同的文档。它还支持灵活的部署方式,可以将MCP服务器直接挂载到FastAPI应用程序中,也可以单独部署。FastAPI-MCP适用于需要快速将API集成到MCP环境中的开发团队,支持Python 3.10及以上版本,推荐使用Python 3.12。
一个轻量级、灵活的代理框架,能够处理各种负载任务。
Bambo是一个新型的代理框架,与主流框架相比,它更加轻量级和灵活,能够处理各种负载任务。这个框架的主要优点是它的灵活性和轻量级特性,使得它可以在多种不同的场景下使用,特别是在需要处理大量数据和请求时。Bambo框架的背景信息显示,它是为了满足现代软件开发中对于高效率和高性能的需求而设计的。目前,该框架是开源的,可以免费使用。
开源框架,加速大型视频扩散模型
FastVideo是一个开源框架,旨在加速大型视频扩散模型。它提供了FastHunyuan和FastMochi两种一致性蒸馏视频扩散模型,实现了8倍推理速度提升。FastVideo基于PCM(Phased-Consistency-Model)提供了首个开放的视频DiT蒸馏配方,支持对最先进的开放视频DiT模型进行蒸馏、微调和推理,包括Mochi和Hunyuan。此外,FastVideo还支持使用FSDP、序列并行和选择性激活检查点进行可扩展训练,以及使用LoRA、预计算潜在和预计算文本嵌入进行内存高效微调。FastVideo的开发正在进行中,技术高度实验性,未来计划包括增加更多蒸馏方法、支持更多模型以及代码更新。
一份综合性的 MCP 基础 AI 工具安全检查清单。
MCP 安全检查表是由 SlowMist 团队编制和维护的,旨在帮助开发者识别和减轻 MCP 实施过程中的安全风险。随着基于 MCP 标准的 AI 工具迅速发展,安全问题愈发重要。该检查表提供了详尽的安全指导,涵盖 MCP 服务器、客户端及多种场景的安全需求,以保护用户隐私并提升整体系统的稳定性和可控性。
Model Context Protocol的命令行检查工具
mcp-cli是一个命令行界面(CLI)检查器,用于Model Context Protocol(MCP)。它允许用户运行MCP服务器,列出工具、资源、提示,并调用工具、读取资源、读取提示。这个工具对于开发者来说非常重要,因为它简化了MCP服务器的开发和交互过程,使得开发者可以更高效地管理和调试MCP服务器。mcp-cli是用JavaScript编写的,并且完全开源,可以在GitHub上找到其源代码。
开源的 RAG 框架
Embedchain 是一个开源的 RAG 框架,旨在简化 AI 应用的创建和部署。它以 “常规但可配置” 为设计原则,既适用于软件工程师,也适用于机器学习工程师。Embedchain 简化了 RAG 应用的创建过程,提供了一个无缝的管理各种非结构化数据的流程。它可以高效地将数据分成可管理的块,生成相关的嵌入,并将它们存储在矢量数据库中以实现优化的检索。借助各种多样的 API,它使用户能够提取上下文信息、找到精确的答案或参与交互式聊天对话,所有这些都根据他们自己的数据进行定制。
一个为开发者提供的生产级智能代理框架,可使用自然语言构建生产级代理工作流。
Eko 是一个面向开发者的生产级智能代理框架。它允许开发者通过自然语言和代码逻辑轻松构建基于代理的工作流。Eko 的主要优点包括高效的任务分解能力、强大的工具支持以及灵活的定制化选项。它旨在帮助开发者快速实现复杂的自动化任务,提高开发效率。Eko 由 FellouAI 团队开发,目前处于开源状态,支持多种平台,包括浏览器和桌面环境。具体价格未明确公开,但从其开源特性来看,可能对开发者免费开放,但部分高级功能或定制化服务可能需要付费。
构建个性化AI代理的开源平台
Scoopika是一个开源的开发者平台,旨在帮助开发者构建能够看、说、听、学习并采取行动的个性化AI代理。它为AI时代提供了一个安全、高效且易于使用的平台,支持全边缘兼容性和实时流媒体,内置视觉和语音聊天功能。Scoopika强调了其开放源代码的特性,提供了服务器端和客户端的运行库,以及React项目中的集成模块,拥有一个不断增长的开发者社区。
一个开源的多云平台客户端,支持LangGraph代理和前端应用开发。
open-mcp-client 是一个开源项目,旨在为多云平台(MCP)提供客户端支持。它结合了LangGraph代理和基于CopilotKit的前端应用,支持与MCP服务器的交互和工具调用。该项目采用TypeScript、CSS、Python和JavaScript开发,强调开发效率和用户体验。它适用于开发者和企业,用于管理和交互多云资源。开源免费,适合希望在多云环境中快速开发和部署的用户。
强大的模型上下文协议 (MCP) 服务器,提供实时网页数据访问解决方案。
Bright Data MCP 是一种强大的模型上下文协议服务器,允许 AI 代理和应用程序实时访问和提取网页数据。其主要优点包括能够绕过地理限制和网站检测,提供无阻碍的网络数据访问,极大地增强了 AI 在数据采集和信息检索方面的能力。该产品定位于为需要实时、可靠网页数据的商业用户提供支持,定价为按需计费,新用户可获得免费试用额度。
基于Agently AI框架的开源自动新闻收集工具
Agently Daily News Collector是一个基于Agently AI应用开发框架的开源项目,能够自动收集特定主题的新闻。用户只需输入新闻收集的领域主题,AI代理将自动工作,直到生成并保存到Markdown文件中的高质量新闻集合。
基于Linux环境快速部署开源大模型的教程
该项目是一个围绕开源大模型的全流程指导教程,包括环境配置、模型部署、高效微调等,简化开源大模型的使用和应用,让更多普通学习者能够使用开源大模型。项目面向对开源大模型感兴趣且想自主上手的学习者,提供详细的环境配置、模型部署和微调方法。
开源服务器代理,用于收集和报告指标
Telegraf是一个开源的服务器代理,用于收集和发送来自数据库、系统和IoT传感器的所有指标和事件。它使用Go语言编写,编译成一个单一的二进制文件,无需外部依赖,占用的内存非常小。Telegraf拥有300多个插件,由社区成员编写,覆盖了云服务、应用程序、IoT传感器等多种数据源。它支持灵活的解析和序列化,适用于多种数据格式,如JSON、CSV、Graphite,并能将数据序列化为InfluxDB行协议和Prometheus等。Telegraf还具有稳健的交付保证,包括流量回压、调度器、时钟漂移调整、全流支持等。此外,Telegraf的自定义构建器允许用户选择特定插件包含在Telegraf二进制文件中,适合在资源受限的设备上使用。
© 2025 AIbase 备案号:闽ICP备08105208号-14