需求人群:
"YOLOv10的目标受众主要是计算机视觉领域的研究人员和开发者,特别是那些需要在实时环境中进行高效目标检测的应用场景,如视频监控、自动驾驶、工业自动化等。该模型的高效率和准确性使其成为这些领域的理想选择。"
使用场景示例:
视频监控系统中实时检测异常行为。
自动驾驶车辆中实时识别行人和车辆。
工业生产线上自动检测产品质量问题。
产品特色:
无需非极大值抑制(NMS)的一致双重分配,实现竞争性能和低推理延迟。
全面优化的YOLOs组件,从效率和准确性两个角度出发,大幅降低计算开销,增强能力。
在COCO数据集上,YOLOv10-S、M、B、L、X不同规模模型均展现出卓越的性能。
支持多种分辨率的输入图像,适应不同的计算和实时性需求。
提供预训练模型和训练好的检查点,方便用户直接使用或进行二次开发。
支持多种深度学习框架,如PyTorch,方便不同背景的开发者使用。
提供详细的文档和示例代码,帮助用户快速理解和应用模型。
使用教程:
1. 安装Python环境和所需的依赖库。
2. 克隆YOLOv10的GitHub仓库到本地。
3. 下载预训练模型或训练好的检查点。
4. 准备待检测的图像或视频数据。
5. 运行模型进行目标检测,获取检测结果。
6. 根据需要对检测结果进行后处理,如绘制边界框、分类标签等。
7. 可选地,使用自己的数据集对模型进行训练和优化。
浏览量:151
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
实时端到端目标检测模型
YOLOv10是新一代的目标检测模型,它在保持实时性能的同时,实现了高精度的目标检测。该模型通过优化后处理和模型架构,减少了计算冗余,提高了效率和性能。YOLOv10在不同模型规模上都达到了最先进的性能和效率,例如,YOLOv10-S在相似的AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOPs减少了2.8倍。
RF-DETR 是由 Roboflow 开发的实时目标检测模型。
RF-DETR 是一个基于变压器的实时目标检测模型,旨在为边缘设备提供高精度和实时性能。它在 Microsoft COCO 基准测试中超过了 60 AP,具有竞争力的性能和快速的推理速度,适合各种实际应用场景。RF-DETR 旨在解决现实世界中的物体检测问题,适用于需要高效且准确检测的行业,如安防、自动驾驶和智能监控等。
基于推理驱动的目标检测技术,通过文本提示实现类似人类精度的检测。
Agentic Object Detection 是一种先进的推理驱动目标检测技术,能够通过文本提示精确识别图像中的目标对象。它无需大量的自定义训练数据,即可实现类似人类精度的检测。该技术利用设计模式对目标的独特属性(如颜色、形状和纹理)进行深度推理,从而在各种场景中实现更智能、更精确的识别。其主要优点包括高精度、无需大量训练数据以及能够处理复杂场景。该技术适用于需要高精度图像识别的行业,如制造业、农业、医疗等领域,能够帮助企业提高生产效率和质量控制水平。产品目前处于试用阶段,用户可以免费试用体验其功能。
实时端到端自动驾驶的截断扩散模型
DiffusionDrive是一个用于实时端到端自动驾驶的截断扩散模型,它通过减少扩散去噪步骤来加快计算速度,同时保持高准确性和多样性。该模型直接从人类示范中学习,无需复杂的预处理或后处理步骤,即可实现实时的自动驾驶决策。DiffusionDrive在NAVSIM基准测试中取得了88.1 PDMS的突破性成绩,并且能够在45 FPS的速度下运行。
面向开放世界的检测与理解统一视觉模型
DINO-X是一个以物体感知为核心的视觉大模型,具备开集检测、智能问答、人体姿态、物体计数、服装换色等核心能力。它不仅能识别已知目标,还能灵活应对未知类别,凭借先进算法,模型具备出色的适应性和鲁棒性,能够精准应对各种不可预见的挑战,提供针对复杂视觉数据的全方位解决方案。DINO-X的应用场景广泛,包括机器人、农业、零售行业、安防监控、交通管理、制造业、智能家居、物流与仓储、娱乐媒体等,是DeepDataSpace公司在计算机视觉技术领域的旗舰产品。
D-FINE重新定义DETRs中的回归任务为细粒度分布细化。
D-FINE是一个强大的实时目标检测模型,它通过将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入全局最优定位自蒸馏(GO-LSD),在不增加额外推理和训练成本的情况下,实现了出色的性能。该模型由中国科学院的研究人员开发,旨在提高目标检测的精度和效率。
先进的目标检测和跟踪模型
Ultralytics YOLO11是基于之前YOLO系列模型的进一步发展,引入了新特性和改进,以提高性能和灵活性。YOLO11旨在快速、准确、易于使用,非常适合广泛的目标检测、跟踪、实例分割、图像分类和姿态估计任务。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2-large是由微软开发的先进视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示来执行如图像描述、目标检测和分割等任务。它利用包含54亿注释的5.4亿图像的FLD-5B数据集,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
先进的开放世界目标检测模型系列
Grounding DINO 1.5是由IDEA Research开发,旨在推进开放世界目标检测技术边界的高级模型系列。该系列包含两个模型:Grounding DINO 1.5 Pro和Grounding DINO 1.5 Edge,分别针对广泛的应用场景和边缘计算场景进行了优化。
YOLOv9模型实现,可编程梯度信息学习
yolov9是YOLOv9论文的实现,它通过使用可编程梯度信息来学习用户想要学习的内容。这个项目是一个开源的深度学习模型,主要用于目标检测任务,具有高效和准确的优势。
YOLOv8目标检测跟踪模型
YOLOv8是YOLO系列目标检测模型的最新版本,能够在图像或视频中准确快速地识别和定位多个对象,并实时跟踪它们的移动。相比之前版本,YOLOv8在检测速度和精确度上都有很大提升,同时支持多种额外的计算机视觉任务,如实例分割、姿态估计等。YOLOv8可通过多种格式部署在不同硬件平台上,提供一站式的端到端目标检测解决方案。
Pixta AI | 大规模数据标注和数据采集服务
Pixta AI是一家提供大规模数据标注和数据采集解决方案的公司。我们拥有1000多名经验丰富的标注员,超过9000万张图片和1000万个视频。通过我们的服务,可以加速您的AI开发。我们提供的标注和数据采集服务能够满足各种需求,并且可以根据您的项目进行定制化。
© 2025 AIbase 备案号:闽ICP备08105208号-14