需求人群:
"目标受众为自动驾驶领域的研究人员和开发者,他们需要一个端到端的框架来实现和测试自动驾驶算法。OpenEMMA提供的开源工具能够帮助他们快速搭建起自己的自动驾驶系统,并且通过预训练模型加速研发进程。"
使用场景示例:
研究人员使用OpenEMMA在nuScenes数据集上测试新的自动驾驶算法。
开发者利用OpenEMMA提供的框架开发出自己的自动驾驶决策系统。
教育机构使用OpenEMMA作为教学工具,向学生展示自动驾驶技术的实际应用。
产品特色:
• 利用预训练的视觉语言模型(VLMs)整合文本和视觉输入
• 精确预测自动驾驶车辆的未来路径点
• 提供模型决策的理由和解释
• 支持YOLO-3D等外部工具进行关键物体检测
• 支持多种模型,如GPT-4、LLaVA、Llama和Qwen2
• 生成预测路径的可视化图像和编译视频
• 支持nuScenes数据集进行模型训练和测试
使用教程:
1. 设置Conda环境并激活:conda create -n openemma python=3.8; conda activate openemma
2. 克隆OpenEMMA仓库:git clone git@github.com:taco-group/OpenEMMA.git; cd OpenEMMA
3. 安装依赖:pip install -r requirements.txt
4. 设置GPT-4 API访问权限:export OPENAI_API_KEY="your_openai_api_key"
5. 准备输入数据:下载并解压nuScenes数据集
6. 运行OpenEMMA:python main.py --model-path [model] --dataroot [dataset_dir] --version [version] --method openemma
7. 解读输出:包括路径点、决策理由、标注图像和编译视频
浏览量:5
最新流量情况
月访问量
4.95m
平均访问时长
00:06:29
每次访问页数
5.68
跳出率
37.69%
流量来源
直接访问
51.66%
自然搜索
33.21%
邮件
0.04%
外链引荐
12.84%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.79%
德国
3.71%
印度
9.03%
俄罗斯
4.40%
美国
18.49%
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
一个集成了Gemini多模态直播和WebRTC技术的单文件应用
Gemini Multimodal Live + WebRTC是一个展示如何构建简单语音AI应用的示例项目,使用Gemini多模态直播API和WebRTC技术。该产品的主要优点包括低延迟、更好的鲁棒性、易于实现核心功能,并且兼容多种平台和语言的SDK。产品背景信息显示,这是一个开源项目,旨在通过WebRTC技术提升实时媒体连接的性能,并简化开发流程。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
开源AI语音处理工具包,支持语音增强、分离和目标说话人提取。
ClearerVoice-Studio是一个开源的AI驱动语音处理工具包,专为研究人员、开发者和最终用户设计。它提供了语音增强、语音分离、目标说话人提取等功能,并提供了最新的预训练模型以及训练和推理脚本,全部可通过此仓库访问。该工具包以其预训练模型、易用性、全面功能和社区驱动的特点而受到青睐。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
实时端到端自动驾驶的截断扩散模型
DiffusionDrive是一个用于实时端到端自动驾驶的截断扩散模型,它通过减少扩散去噪步骤来加快计算速度,同时保持高准确性和多样性。该模型直接从人类示范中学习,无需复杂的预处理或后处理步骤,即可实现实时的自动驾驶决策。DiffusionDrive在NAVSIM基准测试中取得了88.1 PDMS的突破性成绩,并且能够在45 FPS的速度下运行。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
低延迟、高质量的端到端语音交互模型
LLaMA-Omni是一个基于Llama-3.1-8B-Instruct构建的低延迟、高质量的端到端语音交互模型,旨在实现GPT-4o级别的语音能力。该模型支持低延迟的语音交互,能够同时生成文本和语音响应。它在不到3天的时间内使用仅4个GPU完成训练,展示了其高效的训练能力。
开源的专家混合语言模型,具有1.3亿活跃参数。
OLMoE是一个完全开放的、最先进的专家混合模型,具有1.3亿活跃参数和6.9亿总参数。该模型的所有数据、代码和日志都已发布。它提供了论文'OLMoE: Open Mixture-of-Experts Language Models'的所有资源概览。该模型在预训练、微调、适应和评估方面都具有重要应用,是自然语言处理领域的一个里程碑。
开源多模态大型语言模型,支持实时语音输入和流式音频输出。
Mini-Omni是一个开源的多模态大型语言模型,能够实现实时的语音输入和流式音频输出的对话能力。它具备实时语音到语音的对话功能,无需额外的ASR或TTS模型。此外,它还可以在思考的同时进行语音输出,支持文本和音频的同时生成。Mini-Omni通过'Audio-to-Text'和'Audio-to-Audio'的批量推理进一步增强性能。
轻量级大语言模型,专注于文本生成。
Index-1.9B-Pure是Index系列模型中的轻量版本,专为文本生成而设计。它在2.8T的中英文语料上进行了预训练,与同等级模型相比,在多个评测基准上表现领先。该模型特别过滤了所有指令相关数据,以验证指令对benchmark的影响,适用于需要高质量文本生成的领域。
基于大规模数据的高质量信息抽取模型
雅意信息抽取大模型(YAYI-UIE)由中科闻歌算法团队研发,是一款在百万级人工构造的高质量信息抽取数据上进行指令微调的模型。它能够统一训练信息抽取任务,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),覆盖了通用、安全、金融、生物、医疗、商业等多个场景的结构化抽取。该模型的开源旨在促进中文预训练大模型开源社区的发展,并通过开源共建雅意大模型生态。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
Meta 新一代开源大型语言模型,性能卓越
Meta Llama 3是Meta公司推出的新一代开源大型语言模型,性能卓越,在多项行业基准测试中表现出色。它可支持广泛的使用场景,包括改善推理能力等新功能。该模型将在未来支持多语种、多模态,提供更长的上下文窗口和整体性能提升。Llama 3秉承开放理念,将被部署在主要云服务、托管和硬件平台上,供开发者和社区使用。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
新一代开源大型语言模型,性能卓越
Meta Llama 3是Meta公司推出的新一代开源大型语言模型,性能卓越,在多项行业基准测试中表现出色。它可支持广泛的使用场景,包括改善推理能力等新功能。该模型将在未来支持多语种、多模态,提供更长的上下文窗口和整体性能提升。Llama 3秉承开放理念,将被部署在主要云服务、托管和硬件平台上,供开发者和社区使用。
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
先进的开源多模态模型
Yi-VL-34B是 Yi Visual Language(Yi-VL)模型的开源版本,是一种多模态模型,能够理解和识别图像,并进行关于图像的多轮对话。Yi-VL 在最新的基准测试中表现出色,在 MMM 和 CMMMU 两个基准测试中均排名第一。
技术全球领跑
Yi是一款全球领先的预训练模型,在多项评测中取得了SOTA国际最佳性能指标表现。它具有轻巧的模型尺寸,超越了大尺寸开源模型,更加友好于开发者社群。零一万物适合个人及研究用途,并且已具备大模型涌现能力,适用于多元场景,满足开源社区的刚性需求。Yi开源模型对学术研究完全开放,并且同步开放免费商用申请。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
© 2024 AIbase 备案号:闽ICP备08105208号-14