需求人群:
"DriveVLM的目标受众包括自动驾驶领域的研究人员和工程师,以及希望提高自动驾驶系统场景理解和规划能力的企业和组织。该技术特别适合需要处理城市环境中复杂和长尾场景的自动驾驶系统。"
使用场景示例:
在城市环境中,DriveVLM能够识别并处理复杂的道路条件和微妙的人类行为。
DriveVLM-Dual在生产车辆上的部署,展示了其在真实世界自动驾驶环境中的实用性。
在nuScenes数据集上的实验,证明了DriveVLM在处理复杂和不可预测的驾驶条件方面的有效性。
产品特色:
接受图像序列作为输入,通过基于推理的思考链(CoT)机制输出分层规划预测。
可选地结合传统的3D感知和轨迹规划模块,实现空间推理能力和实时轨迹规划。
数据挖掘和注释流程,构建场景理解数据集。
使用注释者团队进行场景注释,包括场景描述、场景分析和规划。
在nuScenes数据集和SUP-AD数据集上进行实验,验证系统的有效性。
DriveVLM-Dual在生产车辆上部署,验证其在现实世界自动驾驶环境中的有效性。
使用教程:
1. 准备图像序列作为输入数据。
2. 将图像序列输入DriveVLM模型。
3. 利用DriveVLM的推理机制进行场景描述、分析和规划。
4. 根据需要,可选地结合3D感知和轨迹规划模块。
5. 从DriveVLM模型获取分层规划预测结果。
6. 在实际自动驾驶环境中部署DriveVLM-Dual,验证其效果。
浏览量:65
最新流量情况
月访问量
2156
平均访问时长
00:00:54
每次访问页数
1.12
跳出率
55.19%
流量来源
直接访问
50.83%
自然搜索
31.99%
邮件
0.05%
外链引荐
6.16%
社交媒体
10.32%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
7.92%
英国
10.28%
美国
81.80%
自动驾驶与视觉语言模型的融合
DriveVLM是一个自动驾驶系统,它利用视觉语言模型(VLMs)来增强场景理解和规划能力。该系统通过独特的推理模块组合,包括场景描述、场景分析和分层规划,以提高对复杂和长尾场景的理解。此外,为了解决VLMs在空间推理和计算需求上的局限性,提出了DriveVLM-Dual,这是一个混合系统,结合了DriveVLM的优势和传统自动驾驶流程。在nuScenes数据集和SUP-AD数据集上的实验表明,DriveVLM和DriveVLM-Dual在处理复杂和不可预测的驾驶条件方面非常有效。最终,DriveVLM-Dual在生产车辆上进行了部署,验证了其在现实世界自动驾驶环境中的有效性。
GAIA-2 是一个先进的视频生成模型,用于创建安全的自动驾驶场景。
GAIA-2 是 Wayve 开发的先进视频生成模型,旨在为自动驾驶系统提供多样化和复杂的驾驶场景,以提高安全性和可靠性。该模型通过生成合成数据来解决依赖现实世界数据收集的限制,能够创建各种驾驶情境,包括常规和边缘案例。GAIA-2 支持多种地理和环境条件的模拟,帮助开发者在没有高昂成本的情况下快速测试和验证自动驾驶算法。
8亿参数的多语言视觉语言模型,支持OCR、图像描述、视觉推理等功能
CohereForAI的Aya Vision 8B是一个8亿参数的多语言视觉语言模型,专为多种视觉语言任务优化,支持OCR、图像描述、视觉推理、总结、问答等功能。该模型基于C4AI Command R7B语言模型,结合SigLIP2视觉编码器,支持23种语言,具有16K上下文长度。其主要优点包括多语言支持、强大的视觉理解能力以及广泛的适用场景。该模型以开源权重形式发布,旨在推动全球研究社区的发展。根据CC-BY-NC许可协议,用户需遵守C4AI的可接受使用政策。
SigLIP2 是谷歌推出的一种多语言视觉语言编码器,用于零样本图像分类。
SigLIP2 是谷歌开发的多语言视觉语言编码器,具有改进的语义理解、定位和密集特征。它支持零样本图像分类,能够通过文本描述直接对图像进行分类,无需额外训练。该模型在多语言场景下表现出色,适用于多种视觉语言任务。其主要优点包括高效的语言图像对齐能力、支持多种分辨率和动态分辨率调整,以及强大的跨语言泛化能力。SigLIP2 的推出为多语言视觉任务提供了新的解决方案,尤其适合需要快速部署和多语言支持的场景。
VLM-R1 是一个稳定且通用的强化视觉语言模型,专注于视觉理解任务。
VLM-R1 是一种基于强化学习的视觉语言模型,专注于视觉理解任务,如指代表达理解(Referring Expression Comprehension, REC)。该模型通过结合 R1(Reinforcement Learning)和 SFT(Supervised Fine-Tuning)方法,展示了在领域内和领域外数据上的出色性能。VLM-R1 的主要优点包括其稳定性和泛化能力,使其能够在多种视觉语言任务中表现出色。该模型基于 Qwen2.5-VL 构建,利用了先进的深度学习技术,如闪存注意力机制(Flash Attention 2),以提高计算效率。VLM-R1 旨在为视觉语言任务提供一种高效且可靠的解决方案,适用于需要精确视觉理解的应用场景。
低成本强化视觉语言模型的泛化能力,仅需不到3美元。
R1-V是一个专注于强化视觉语言模型(VLM)泛化能力的项目。它通过可验证奖励的强化学习(RLVR)技术,显著提升了VLM在视觉计数任务中的泛化能力,尤其是在分布外(OOD)测试中表现出色。该技术的重要性在于,它能够在极低的成本下(仅需2.62美元的训练成本),实现对大规模模型的高效优化,为视觉语言模型的实用化提供了新的思路。项目背景基于对现有VLM训练方法的改进,目标是通过创新的训练策略,提升模型在复杂视觉任务中的表现。R1-V的开源性质也使其成为研究者和开发者探索和应用先进VLM技术的重要资源。
一个强大的OCR包,使用最先进的视觉语言模型提取图像中的文本。
ollama-ocr是一个基于ollama的光学字符识别(OCR)模型,能够从图像中提取文本。它利用先进的视觉语言模型,如LLaVA、Llama 3.2 Vision和MiniCPM-V 2.6,提供高精度的文本识别。该模型对于需要从图片中获取文本信息的场景非常有用,如文档扫描、图像内容分析等。它开源免费,易于集成到各种项目中。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
NVIDIA Cosmos是用于物理AI开发的世界基础模型平台。
NVIDIA Cosmos是一个先进的世界基础模型平台,旨在加速物理AI系统的开发,如自动驾驶车辆和机器人。它提供了一系列预训练的生成模型、高级分词器和加速数据处理管道,使开发者能够更容易地构建和优化物理AI应用。Cosmos通过其开放的模型许可,降低了开发成本,提高了开发效率,适用于各种规模的企业和研究机构。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
CogAgent-9B-20241220是基于视觉语言模型的GUI代理模型。
CogAgent-9B-20241220模型基于GLM-4V-9B双语开源VLM基础模型,通过数据收集和优化、多阶段训练以及策略改进,在GUI感知、推理预测准确性、动作空间完整性和任务泛化性方面取得了显著进步。该模型支持双语(中文和英文)交互,并能处理屏幕截图和语言输入。此版本已应用于ZhipuAI的GLM-PC产品中,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
利用视觉语言模型将PDF解析为Markdown。
vision-parse是一个利用视觉语言模型(Vision LLMs)将PDF文档解析为格式化良好的Markdown内容的工具。它支持多种模型,包括OpenAI、LLama和Gemini等,能够智能识别和提取文本及表格,并保持文档的层级结构、样式和缩进。该工具的主要优点包括高精度的内容提取、格式保持、支持多模型以及本地模型托管,适用于需要高效文档处理的用户。
开源的端到端视觉语言模型(VLM)基础的GUI代理
CogAgent是一个基于视觉语言模型(VLM)的GUI代理,它通过屏幕截图和自然语言实现双语(中文和英文)交云。CogAgent在GUI感知、推理预测准确性、操作空间完整性和任务泛化方面取得了显著进步。该模型已经在ZhipuAI的GLM-PC产品中得到应用,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解、视觉定位等多项任务中展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
视觉语言模型的最新进展,集成微信AI的新技术
POINTS-Yi-1.5-9B-Chat是一个视觉语言模型,它集成了最新的视觉语言模型技术和微信AI提出的新技术。该模型在预训练数据集过滤、模型汤(Model Soup)技术等方面有显著创新,能够显著减少预训练数据集的大小并提高模型性能。它在多个基准测试中表现优异,是视觉语言模型领域的一个重要进展。
视觉语言模型的最新进展
POINTS-Qwen-2-5-7B-Chat是一个集成了视觉语言模型最新进展和新技巧的模型,由微信AI的研究人员提出。它通过预训练数据集筛选、模型汤等技术,显著提升了模型性能。这个模型在多个基准测试中表现优异,是视觉语言模型领域的一个重要进步。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
实时端到端自动驾驶的截断扩散模型
DiffusionDrive是一个用于实时端到端自动驾驶的截断扩散模型,它通过减少扩散去噪步骤来加快计算速度,同时保持高准确性和多样性。该模型直接从人类示范中学习,无需复杂的预处理或后处理步骤,即可实现实时的自动驾驶决策。DiffusionDrive在NAVSIM基准测试中取得了88.1 PDMS的突破性成绩,并且能够在45 FPS的速度下运行。
高效开源的视觉语言模型
SmolVLM是一个小型但功能强大的视觉语言模型(VLM),拥有2B参数,以其较小的内存占用和高效性能在同类模型中处于领先地位。SmolVLM完全开源,包括所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可下发布。该模型适合在浏览器或边缘设备上进行本地部署,降低推理成本,并允许用户自定义。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
© 2025 AIbase 备案号:闽ICP备08105208号-14