需求人群:
"目标受众包括机器视觉、增强现实、自动驾驶等领域的研究人员和开发者。Depth Pro的高速度和高精度使其特别适合需要实时深度信息的应用场景。"
使用场景示例:
在增强现实应用中,用于实时生成用户周围环境的深度信息。
在自动驾驶车辆中,用于精确识别和测量与障碍物的距离。
在机器人导航系统中,用于环境建模和路径规划。
产品特色:
高效多尺度视觉变换器,用于密集预测
结合真实与合成数据集的训练协议,提高度量精度
针对深度图边界精度的专用评估指标
单图像中焦距估计的先进技术
快速生成高分辨率深度图,速度达到0.3秒/2.25百万像素
使用教程:
1. 设置虚拟环境,例如使用miniconda。
2. 通过运行`source get_pretrained_models.sh`下载预训练模型。
3. 使用命令行工具`depth-pro-run`直接在单张图片上运行模型。
4. 通过Python脚本调用模型,进行图像加载、预处理和推理。
5. 使用边界精度评估指标,评估模型性能。
6. 参考项目中的论文和代码,进一步了解模型细节和使用场景。
浏览量:36
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
高精度单目深度估计模型
Depth Pro是一个用于单目深度估计的研究项目,它能够快速生成高精度的深度图。该模型利用多尺度视觉变换器进行密集预测,并结合真实与合成数据集进行训练,以实现高准确度和细节捕捉。它在标准GPU上生成2.25百万像素深度图仅需0.3秒,具有速度快、精度高的特点,对于机器视觉和增强现实等领域具有重要意义。
Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Video Depth Anything 是一个基于深度学习的视频深度估计模型,能够为超长视频提供高质量、时间一致的深度估计。该技术基于 Depth Anything V2 开发,具有强大的泛化能力和稳定性。其主要优点包括对任意长度视频的深度估计能力、时间一致性以及对开放世界视频的良好适应性。该模型由字节跳动的研究团队开发,旨在解决长视频深度估计中的挑战,如时间一致性问题和复杂场景的适应性问题。目前,该模型的代码和演示已公开,供研究人员和开发者使用。
用于评估Windows PC或Apple Mac上AI推理引擎性能的基准测试工具。
Procyon AI Computer Vision Benchmark是由UL Solutions开发的一款专业基准测试工具,旨在帮助用户评估不同AI推理引擎在Windows PC或Apple Mac上的性能表现。该工具通过执行一系列基于常见机器视觉任务的测试,利用多种先进的神经网络模型,为工程团队提供独立、标准化的评估手段,以便他们了解AI推理引擎的实施质量和专用硬件的性能。产品支持多种主流的AI推理引擎,如NVIDIA® TensorRT™、Intel® OpenVINO™等,并可比较浮点和整数优化模型的性能。其主要优点包括易于安装和运行、无需复杂配置、可导出详细结果文件等。产品定位为专业用户,如硬件制造商、软件开发者和科研人员,以助力他们在AI领域的研发和优化工作。
NVIDIA Cosmos是用于物理AI开发的世界基础模型平台。
NVIDIA Cosmos是一个先进的世界基础模型平台,旨在加速物理AI系统的开发,如自动驾驶车辆和机器人。它提供了一系列预训练的生成模型、高级分词器和加速数据处理管道,使开发者能够更容易地构建和优化物理AI应用。Cosmos通过其开放的模型许可,降低了开发成本,提高了开发效率,适用于各种规模的企业和研究机构。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
将单目视频转换为沉浸式立体3D视频的框架
StereoCrafter是一个创新的框架,它利用基础模型作为先验,通过深度估计和立体视频修复技术,将2D视频转换为沉浸式立体3D视频。这项技术突破了传统方法的局限,提高了显示设备所需的高保真度生成性能。StereoCrafter的主要优点包括能够处理不同长度和分辨率的视频输入,以及通过自回归策略和分块处理来优化视频处理。此外,StereoCrafter还开发了复杂的数据处理流程,以重建大规模、高质量的数据集,支持训练过程。这个框架为3D设备(如Apple Vision Pro和3D显示器)创造沉浸式内容提供了实际的解决方案,可能改变我们体验数字媒体的方式。
从日常动态视频中快速、准确地估计相机和密集结构
MegaSaM是一个系统,它允许从动态场景的单目视频中准确、快速、稳健地估计相机参数和深度图。该系统突破了传统结构从运动和单目SLAM技术的局限,这些技术通常假设输入视频主要包含静态场景和大量视差。MegaSaM通过深度视觉SLAM框架的精心修改,能够扩展到真实世界中复杂动态场景的视频,包括具有未知视场和不受限制相机路径的视频。该技术在合成和真实视频上的广泛实验表明,与先前和并行工作相比,MegaSaM在相机姿态和深度估计方面更为准确和稳健,运行时间更快或相当。
高分辨率、高精度的深度估计方法
Prompt Depth Anything是一种用于高分辨率和高精度度量深度估计的方法。该方法通过使用提示(prompting)技术,激发深度基础模型的潜力,利用iPhone LiDAR作为提示,引导模型产生高达4K分辨率的精确度量深度。此外,该方法还引入了可扩展的数据管道进行训练,并发布了更详细的ScanNet++数据集深度注释。该技术的主要优点包括高分辨率、高精度的深度估计,以及对下游应用如3D重建和通用机器人抓取的益处。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
实时端到端自动驾驶的截断扩散模型
DiffusionDrive是一个用于实时端到端自动驾驶的截断扩散模型,它通过减少扩散去噪步骤来加快计算速度,同时保持高准确性和多样性。该模型直接从人类示范中学习,无需复杂的预处理或后处理步骤,即可实现实时的自动驾驶决策。DiffusionDrive在NAVSIM基准测试中取得了88.1 PDMS的突破性成绩,并且能够在45 FPS的速度下运行。
4D场景创建工具,使用多视图视频扩散模型
CAT4D是一个利用多视图视频扩散模型从单目视频中生成4D场景的技术。它能够将输入的单目视频转换成多视角视频,并重建动态的3D场景。这项技术的重要性在于它能够从单一视角的视频资料中提取并重建出三维空间和时间的完整信息,为虚拟现实、增强现实以及三维建模等领域提供了强大的技术支持。产品背景信息显示,CAT4D由Google DeepMind、Columbia University和UC San Diego的研究人员共同开发,是一个前沿的科研成果转化为实际应用的案例。
共语手势视频重现技术
TANGO是一个基于层次化音频-运动嵌入和扩散插值的共语手势视频重现技术。它利用先进的人工智能算法,将语音信号转换成相应的手势动作,实现视频中人物手势的自然重现。这项技术在视频制作、虚拟现实、增强现实等领域具有广泛的应用前景,能够提升视频内容的互动性和真实感。TANGO由东京大学和CyberAgent AI Lab联合开发,代表了当前人工智能在手势识别和动作生成领域的前沿水平。
特斯拉自动驾驶技术与机器人的未来愿景
We, Robot 是特斯拉公司展示其在自动驾驶技术和机器人技术领域愿景的页面。它强调了特斯拉对于创建可持续未来、提高交通效率、可负担性和安全性的承诺。该页面介绍了特斯拉的全自动驾驶技术(监督)以及未来自动驾驶汽车和机器人的潜在应用,如Robotaxi、Robovan和Tesla Bot。这些技术旨在通过自动化提高日常生活的便利性,同时减少交通事故,降低交通成本。
Snap Inc.推出的AR眼镜,增强现实体验。
Spectacles '24是Snap Inc.推出的一款AR眼镜,旨在通过增强现实技术将人们更紧密地联系在一起。这款眼镜配备了透明镜片,让你在保持与周围环境连接的同时,享受增强现实带来的新体验。它不仅是一款时尚的配饰,更是一个能够让你与朋友共享创意、一起玩耍、学习和工作的工具。Spectacles '24搭载了Snap OS操作系统,提供了一个自然的界面,用户无需学习即可轻松上手。
高保真动态城市场景重建技术
OmniRe 是一种用于高效重建高保真动态城市场景的全面方法,它通过设备日志来实现。该技术通过构建基于高斯表示的动态神经场景图,以及构建多个局部规范空间来模拟包括车辆、行人和骑行者在内的各种动态行为者,从而实现了对场景中不同对象的全面重建。OmniRe 允许我们全面重建场景中存在的不同对象,并随后实现所有参与者实时参与的重建场景的模拟。在 Waymo 数据集上的广泛评估表明,OmniRe 在定量和定性方面都大幅超越了先前的最先进方法。
AI技术驱动的虚拟试衣体验
Kolors Virtual Try-On 是一款结合了人工智能和增强现实技术的虚拟试衣应用,能够根据给定的模特图和选定衣服生成自然美观的试穿效果。该产品支持从模特素材图到模特短视频的全流程生成,满足电商模特素材生成需求。
专业的数据解决方案提供商
博登智能自主研发的数据标注处理平台——BASE(Boden Annotation Service Enhancement),具有超强适用性,可完成从数据采集、清洗、标注到验证的全套服务。BASE平台覆盖了包括语音、文本、图像、视频、点云等多种模态类型的数据处理能力,通过AI辅助标注的形式,相较于传统的标注方式,帮助企业节省了高达30%-40%的成本,并提升50%以上的效率,已经获得了市场的广泛认可。 数据处理平台——BASE平台能够支持开展包括通用图像标注,3D/4D点云标注,图片点云融合标注,NLP文本标注,医疗影像标注,视频描述标注,音素标注,音频标注等标注业务。
欧洲最大的私人人工智能实验室
Silo AI 是欧洲最大的私人人工智能实验室,与行业领导者合作开发智能设备、自动驾驶车辆、工业4.0和智能城市。其产品和技术致力于将最先进的人工智能带入生产,为客户带来利益。
利用增强现实技术为一线工人提供易于使用的知识共享工具,以在最需要的时间、地点和方式提供信息。
Ario 利用增强现实技术为一线工人提供易于使用的知识共享工具,以在最需要的时间、地点和方式提供信息。Ario 结合了扫描识别、资源库和连接技术,可以提供以下功能:
自动驾驶与视觉语言模型的融合
DriveVLM是一个自动驾驶系统,它利用视觉语言模型(VLMs)来增强场景理解和规划能力。该系统通过独特的推理模块组合,包括场景描述、场景分析和分层规划,以提高对复杂和长尾场景的理解。此外,为了解决VLMs在空间推理和计算需求上的局限性,提出了DriveVLM-Dual,这是一个混合系统,结合了DriveVLM的优势和传统自动驾驶流程。在nuScenes数据集和SUP-AD数据集上的实验表明,DriveVLM和DriveVLM-Dual在处理复杂和不可预测的驾驶条件方面非常有效。最终,DriveVLM-Dual在生产车辆上进行了部署,验证了其在现实世界自动驾驶环境中的有效性。
先进的单目深度估计模型
Depth Anything V2 是一个经过改进的单目深度估计模型,它通过使用合成图像和大量未标记的真实图像进行训练,提供了比前一版本更精细、更鲁棒的深度预测。该模型在效率和准确性方面都有显著提升,速度比基于Stable Diffusion的最新模型快10倍以上。
AI眼镜,赋予你视觉分析与实时翻译的超能力
Frame是Brilliant Labs推出的一款AI眼镜,它通过集成的AI技术,为用户提供实时的视觉分析和翻译功能。这款眼镜结合了OpenAI和Whisper技术,允许用户通过视觉和听觉来搜索和理解他们所看到和听到的内容。Frame的主要优点在于它的开放源代码特性,鼓励开发者、艺术家和黑客探索和创造新的功能,推动产品的创新和个性化。此外,它还包括了Mister Power功能,确保全天候的电池续航。
用于自动驾驶的大规模视频生成模型
GenAD是由上海人工智能实验室联合香港科技大学、德国图宾根大学和香港大学共同推出的首个大规模自动驾驶视频生成模型。它通过预测和模拟真实世界场景,为自动驾驶技术的研究和应用提供支撑。GenAD在理解复杂动态环境、适应开放世界场景、精准预测等方面具有较强能力,能够通过语言和行车轨迹进行控制,并展现出应用于自动驾驶规划任务的潜力,有助于提高行车安全性和效率。
释放大规模未标记数据的力量
Depth Anything是一个高度实用的解决方案,用于稳健的单目深度估计。我们旨在构建一个简单而强大的基础模型,处理任何情况下的任何图像,而不追求新颖的技术模块。为此,我们通过设计数据引擎来扩大数据集,收集并自动注释大规模未标记数据(约62M),从而显着扩大数据覆盖范围,从而能够减少泛化误差。我们研究了两种简单而有效的策略,使数据扩展变得有前途。首先,通过利用数据增强工具创建更具挑战性的优化目标。它迫使模型积极寻求额外的视觉知识并获得强大的表示。其次,开发了辅助监督,以强制模型从预训练编码器中继承丰富的语义先验。我们对其零-shot能力进行了广泛评估,包括六个公共数据集和随机拍摄的照片。它展现出令人印象深刻的泛化能力。此外,通过使用来自NYUv2和KITTI的度量深度信息对其进行微调,我们建立了新的SOTAs。我们更好的深度模型也导致更好的深度条件ControlNet。我们的模型发布在https://github.com/LiheYoung/Depth-Anything。
大规模实景数据集,用于深度学习三维视觉研究
DL3DV-10K是一个包含超过10000个高质量视频的大规模实景数据集,每个视频都经过人工标注场景关键点和复杂程度,并提供相机姿态、NeRF估计深度、点云和3D网格等。该数据集可用于通用NeRF研究、场景一致性跟踪、视觉语言模型等计算机视觉研究。
360度全场景生成
ZeroNVS 是一款用于从单张真实图像进行零样本 360 度全景合成的工具。它提供了 3D SDS 蒸馏代码、评估代码和训练好的模型。用户可以使用该工具进行自己的 NeRF 模型蒸馏和评估,并且可以在各种不同的数据集上进行实验。ZeroNVS 具有高质量的合成效果,并且支持自定义的图像数据。该工具主要用于虚拟现实、增强现实和全景视频制作等领域。
安博思公司开发的40亿参数通用式生成世界模型
GAIA-1是一种具有90亿参数的通用式生成世界模型,专为自动驾驶而设计。它可以通过视频、文本和动作输入生成逼真的驾驶场景视频,并可以精细控制自己车辆的行为以及场景中的特征。GAIA-1利用多模态学习方法,可以生成丰富多样的驾驶场景,增强自动驾驶系统的学习和解释能力。它的关键功能包括:基于视频、文本和动作的生成能力、可控性高、支持长时间生成、可扩展等。GAIA-1可用于自动驾驶研究、仿真、数据增强等多种应用场景。它代表了生成式AI在自动驾驶领域的先进探索,为创新提供了无限可能。
基于低秩参数优化的模型控制技术
Control-LoRA 是通过在 ControlNet 上添加低秩参数优化来实现的,为消费级 GPU 提供了更高效、更紧凑的模型控制方法。该产品包含多个 Control-LoRA 模型,包括 MiDaS 和 ClipDrop 深度估计、Canny 边缘检测、照片和素描上色、Revision 等功能。Control-LoRA 模型经过训练,可以在不同的图像概念和纵横比上生成高质量的图像。
© 2025 AIbase 备案号:闽ICP备08105208号-14