需求人群:
"该产品适合机器人研究和开发领域的专业人士,以及对人工智能和机器学习有兴趣的学者和学生。它为机器人技术在体育竞技领域的应用提供了新的视角和研究方向。"
使用场景示例:
与不同水平的人类选手进行29场比赛,机器人赢得了45%的比赛
专业乒乓球教练Barney J. Reed对机器人的表现给予高度评价
用户研究显示,参与者普遍认为与机器人打球既有趣又吸引人
产品特色:
分层和模块化策略架构,包含低级控制器和高级控制器
实现零样本模拟到现实世界(sim-to-real)的技术
实时适应未知对手的能力
通过与人类进行实际比赛来测试模型的用户研究
低级技能策略专注于乒乓球的特定方面,如正手上旋、反手定位或正手发球
高级控制器负责协调低级技能,根据当前游戏统计数据、技能描述符和对手的能力选择最优技能
使用教程:
1. 访问产品页面以获取更多信息
2. 阅读有关机器人乒乓球代理模型的研究论文
3. 观看机器人与人类选手比赛的高光时刻视频
4. 了解机器人的分层控制策略和实时适应机制
5. 参与用户研究,体验与机器人进行乒乓球比赛的乐趣
6. 根据反馈和评价,进一步了解机器人在乒乓球领域的应用潜力
浏览量:11
最新流量情况
月访问量
2.23m
平均访问时长
00:04:16
每次访问页数
3.45
跳出率
51.15%
流量来源
直接访问
64.46%
自然搜索
16.59%
邮件
0.10%
外链引荐
15.81%
社交媒体
2.22%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
2.49%
英国
2.15%
印度
2.62%
日本
33.84%
美国
22.43%
机器人乒乓球竞赛水平达到业余人类水平
这是Google DeepMind团队研发的机器人乒乓球代理模型,它通过深度学习技术,实现了与业余人类选手在乒乓球比赛中的竞争力。这项技术的重要性在于它不仅推动了机器人在高速运动、实时精确决策和战略决策制定方面的技术发展,而且为机器人与人类直接竞争提供了一个有价值的基准。
Seaweed-APT是一种支持实时单步生成1280x720 24fps视频的模型。
Seaweed-APT是一种用于视频生成的模型,通过对抗性后训练技术,实现了大规模文本到视频的单步生成。该模型能够在短时间内生成高质量的视频,具有重要的技术意义和应用价值。其主要优点是速度快、生成效果好,适用于需要快速生成视频的场景。目前尚未明确具体的价格和市场定位。
通过玩游戏训练AI机器人,轻松创建定制化游戏机器人。
StractiAI是一个游戏AI训练平台,用户可以通过简单的游戏过程训练AI机器人。它无需编程知识,即可创建定制化的游戏机器人,具有操作简单、易于上手的特点。StractiAI提供免费试用,同时也有付费版本Stracti PRO,价格为每月49美元,适合希望在游戏中获得自动化帮助的用户。
MangaNinja 是一种基于参考的线稿上色方法,可实现精确匹配和细粒度交互控制。
MangaNinja 是一种参考引导的线稿上色方法,它通过独特的设计确保精确的人物细节转录,包括用于促进参考彩色图像和目标线稿之间对应学习的块洗牌模块,以及用于实现细粒度颜色匹配的点驱动控制方案。该模型在自收集的基准测试中表现出色,超越了当前解决方案的精确上色能力。此外,其交互式点控制在处理复杂情况(如极端姿势和阴影)、跨角色上色、多参考协调等方面展现出巨大潜力,这些是现有算法难以实现的。MangaNinja 由来自香港大学、香港科技大学、通义实验室和蚂蚁集团的研究人员共同开发,相关论文已发表在 arXiv 上,代码也已开源。
InternLM3-8B-Instruct是一个开源的80亿参数指令模型,用于通用用途和高级推理。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
展示小型语言模型通过自我演化深度思考掌握数学推理能力的研究成果。
rStar-Math是一项研究,旨在证明小型语言模型(SLMs)能够在不依赖于更高级模型的情况下,与OpenAI的o1模型相媲美甚至超越其数学推理能力。该研究通过蒙特卡洛树搜索(MCTS)实现“深度思考”,其中数学策略SLM在基于SLM的流程奖励模型的指导下进行测试时搜索。rStar-Math引入了三种创新方法来应对训练两个SLM的挑战,通过4轮自我演化和数百万个合成解决方案,将SLMs的数学推理能力提升到最先进水平。该模型在MATH基准测试中显著提高了性能,并在AIME竞赛中表现优异。
SVFR是一个用于视频人脸修复的统一框架。
SVFR(Stable Video Face Restoration)是一个用于广义视频人脸修复的统一框架。它整合了视频人脸修复(BFR)、着色和修复任务,通过利用Stable Video Diffusion(SVD)的生成和运动先验,并结合统一的人脸修复框架中的任务特定信息,有效结合了这些任务的互补优势,增强了时间连贯性并实现了卓越的修复质量。该框架引入了可学习的任务嵌入以增强任务识别,并采用新颖的统一潜在正则化(ULR)来鼓励不同子任务之间的共享特征表示学习。此外,还引入了面部先验学习和自引用细化作为辅助策略,以进一步提高修复质量和时间稳定性。SVFR在视频人脸修复领域取得了最先进的成果,并为广义视频人脸修复建立了新的范式。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
STAR是一种用于真实世界视频超分辨率的时空增强框架,首次将强大的文本到视频扩散先验集成到真实世界视频超分辨率中。
STAR是一种创新的视频超分辨率技术,通过将文本到视频扩散模型与视频超分辨率相结合,解决了传统GAN方法中存在的过度平滑问题。该技术不仅能够恢复视频的细节,还能保持视频的时空一致性,适用于各种真实世界的视频场景。STAR由南京大学、字节跳动等机构联合开发,具有较高的学术价值和应用前景。
NVIDIA Cosmos是用于物理AI开发的世界基础模型平台。
NVIDIA Cosmos是一个先进的世界基础模型平台,旨在加速物理AI系统的开发,如自动驾驶车辆和机器人。它提供了一系列预训练的生成模型、高级分词器和加速数据处理管道,使开发者能够更容易地构建和优化物理AI应用。Cosmos通过其开放的模型许可,降低了开发成本,提高了开发效率,适用于各种规模的企业和研究机构。
从穿着人身上生成平铺布料的模型
TryOffAnyone是一个用于从穿着人身上生成平铺布料的深度学习模型。该模型能够将穿着衣物的人的图片转换成布料平铺图,这对于服装设计、虚拟试衣等领域具有重要意义。它通过深度学习技术,实现了高度逼真的布料模拟,使得用户可以更直观地预览衣物的穿着效果。该模型的主要优点包括逼真的布料模拟效果和较高的自动化程度,可以减少实际试衣过程中的时间和成本。
70B参数的文本生成模型
Llama-3.1-70B-Instruct-AWQ-INT4是一个由Hugging Face托管的大型语言模型,专注于文本生成任务。该模型拥有70B个参数,能够理解和生成自然语言文本,适用于多种文本相关的应用场景,如内容创作、自动回复等。它基于深度学习技术,通过大量的数据训练,能够捕捉语言的复杂性和多样性。模型的主要优点包括高参数量带来的强大表达能力,以及针对特定任务的优化,使其在文本生成领域具有较高的效率和准确性。
微软开源的视频分词器家族
VidTok是微软开源的一系列先进的视频分词器,它在连续和离散分词方面表现出色。VidTok在架构效率、量化技术和训练策略上都有显著的创新,提供了高效的视频处理能力,并且在多个视频质量评估指标上超越了以往的模型。VidTok的开发旨在推动视频处理和压缩技术的发展,对于视频内容的高效传输和存储具有重要意义。
一款具有671B参数的Mixture-of-Experts语言模型。
DeepSeek-V3是一个强大的Mixture-of-Experts (MoE) 语言模型,拥有671B的总参数量,每次激活37B参数。它采用了Multi-head Latent Attention (MLA) 和 DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分的验证。此外,DeepSeek-V3首次采用了无辅助损失的负载均衡策略,并设置了多令牌预测训练目标,以实现更强大的性能。DeepSeek-V3在14.8万亿高质量令牌上进行了预训练,随后进行了监督式微调和强化学习阶段,以充分利用其能力。综合评估显示,DeepSeek-V3超越了其他开源模型,并达到了与领先的闭源模型相当的性能。尽管性能出色,DeepSeek-V3的完整训练仅需要2.788M H800 GPU小时,并且训练过程非常稳定。
深度推理翻译模型,通过长思考链优化神经机器翻译。
DRT-o1是一个神经机器翻译模型,它通过长思考链的方式优化翻译过程。该模型通过挖掘含有比喻或隐喻的英文句子,并采用多代理框架(包括翻译者、顾问和评估者)来合成长思考的机器翻译样本。DRT-o1-7B和DRT-o1-14B是基于Qwen2.5-7B-Instruct和Qwen2.5-14B-Instruct训练的大型语言模型。DRT-o1的主要优点在于其能够处理复杂的语言结构和深层次的语义理解,这对于提高机器翻译的准确性和自然性至关重要。
一种基于视频扩散模型的多任务灵巧手操控通用机器人策略
Video Prediction Policy(VPP)是一种基于视频扩散模型(VDMs)的机器人策略,能够准确预测未来的图像序列,展现出对物理动力学的良好理解。VPP利用VDMs中的视觉表示来反映物理世界的演变,这种表示被称为预测性视觉表示。通过结合多样化的人类或机器人操控数据集,并采用统一的视频生成训练目标,VPP在两个模拟环境和两个真实世界基准测试中均优于现有方法。特别是在Calvin ABC-D基准测试中,相较于先前的最佳技术,VPP实现了28.1%的相对改进,并在复杂的真实世界灵巧手操控任务中提高了28.8%的成功率。
基于扩散反转的多步图像超分辨率模型
InvSR是一种基于扩散反转的图像超分辨率技术,利用大型预训练扩散模型中丰富的图像先验来提高超分辨率性能。该技术通过部分噪声预测策略构建扩散模型的中间状态,作为起始采样点,并使用深度噪声预测器估计最优噪声图,从而在前向扩散过程中初始化采样,生成高分辨率结果。InvSR支持任意数量的采样步骤,从一到五步不等,即使仅使用单步采样,也展现出优于或媲美现有最先进方法的性能。
图生视频大模型,专为动漫和游戏场景设计
Ruyi是图森未来发布的图生视频大模型,专为在消费级显卡上运行而设计,并提供详尽的部署说明和ComfyUI工作流,以便用户能够快速上手。Ruyi凭借在帧间一致性、动作流畅性方面的卓越表现,以及和谐自然的色彩呈现和构图,将为视觉叙事提供全新的可能性。同时,该模型还针对动漫和游戏场景进行深度学习,将成为ACG爱好者理想的创意伙伴。
用于强化学习的Unitree机器人平台
Unitree RL GYM是一个基于Unitree机器人的强化学习平台,支持Unitree Go2、H1、H1_2、G1等型号。该平台提供了一个集成环境,允许研究人员和开发者训练和测试强化学习算法在真实或模拟的机器人上的表现。它的重要性在于推动机器人自主性和智能技术的发展,特别是在需要复杂决策和运动控制的应用中。Unitree RL GYM是开源的,可以免费使用,主要面向科研人员和机器人爱好者。
端侧全模态理解模型,软硬协同释放无穹端侧智能
Infini-Megrez是一个由无问芯穹研发的端侧全模态理解模型,它基于Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力,并在图像理解、语言理解和语音理解三个方面均取得最优精度。该模型通过软硬协同优化,确保了各结构参数与主流硬件高度适配,推理速度领先同精度模型最大300%。它简单易用,采用最原始的LLaMA结构,开发者无需任何修改便可将模型部署于各种平台,最小化二次开发复杂度。此外,Infini-Megrez还提供了完整的WebSearch方案,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。
用于识别数学推理过程中的错误
ProcessBench是一个专注于数学推理错误的识别工具。它通过分析数学问题的解决步骤来识别过程中的错误,这对于教育领域尤其是数学教育具有重要意义。该工具可以帮助学生和教师识别和纠正数学解题过程中的错误,提高解题的准确性和效率。ProcessBench基于深度学习技术,能够处理大量的数学问题数据,为数学教育提供技术支持。
快速因果视频生成器,实现即时视频生成。
CausVid是一个先进的视频生成模型,它通过将预训练的双向扩散变换器适配为因果变换器,实现了即时视频帧的生成。这一技术的重要性在于它能够显著减少视频生成的延迟,使得视频生成能够以交互式帧率(9.4FPS)在单个GPU上进行流式生成。CausVid模型支持从文本到视频的生成,以及零样本图像到视频的生成,展现了视频生成技术的新高度。
高质量身份保留的人像动画合成工具。
StableAnimator是首个端到端身份保留的视频扩散框架,能够在不进行后处理的情况下合成高质量视频。该技术通过参考图像和一系列姿势进行条件合成,确保了身份一致性。其主要优点在于无需依赖第三方工具,适合需要高质量人像动画的用户。
AI驱动的纹身设计生成器,快速创建个性化纹身设计。
Tattooer是一个利用人工智能技术,为用户提供个性化纹身设计的在线平台。用户可以通过自然语言描述他们想要的纹身,选择风格,然后AI会生成多个设计草图供用户选择和调整,直到满意为止。该产品的主要优点包括无需设计技能、即时生成、多种风格选择和高分辨率输出。它代表了纹身设计领域的技术革新,通过深度学习算法和艺术专业知识的结合,使得纹身设计过程更加高效和个性化。Tattooer的定价灵活,提供基础和专业两种计划,以满足不同用户的需求。
一款AI视觉语言模型,提供图像分析和描述服务。
InternVL是一个AI视觉语言模型,专注于图像分析和描述。它通过深度学习技术,能够理解和解释图像内容,为用户提供准确的图像描述和分析结果。InternVL的主要优点包括高准确性、快速响应和易于集成。该技术背景基于最新的人工智能研究,致力于提高图像识别的效率和准确性。目前,InternVL提供免费试用,具体价格和定位需要根据用户需求定制。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
从单张图片创建全身动态说话头像
One Shot, One Talk 是一种基于深度学习的图像生成技术,它能够从单张图片中重建出具有个性化细节的全身动态说话头像,并支持逼真的动画效果,包括生动的身体动作和自然的表情变化。这项技术的重要性在于它极大地降低了创建逼真、可动的虚拟形象的门槛,使得用户可以仅通过一张图片就能生成具有高度个性化和表现力的虚拟形象。产品背景信息显示,该技术由来自中国科学技术大学和香港理工大学的研究团队开发,结合了最新的图像到视频扩散模型和3DGS-mesh混合头像表示,通过关键的正则化技术来减少由不完美标签引起的不一致性。
PaliGemma 2是功能强大的视觉语言模型,简单易调优。
PaliGemma 2是Gemma家族中的第二代视觉语言模型,它在性能上进行了扩展,增加了视觉能力,使得模型能够看到、理解和与视觉输入交互,开启了新的可能性。PaliGemma 2基于高性能的Gemma 2模型构建,提供了多种模型尺寸(3B、10B、28B参数)和分辨率(224px、448px、896px)以优化任何任务的性能。此外,PaliGemma 2在化学公式识别、乐谱识别、空间推理和胸部X光报告生成等方面展现出领先的性能。PaliGemma 2旨在为现有PaliGemma用户提供便捷的升级路径,作为即插即用的替代品,大多数任务无需大幅修改代码即可获得性能提升。
© 2024 AIbase 备案号:闽ICP备08105208号-14