需求人群:
"Indexify适用于需要处理大量非结构化数据并希望快速获取最新数据的企业和开发者。无论是在原型设计阶段还是在生产环境中,Indexify都能提供强大的数据提取和检索能力,帮助用户保持其LLM应用的数据准确性和响应性。"
使用场景示例:
使用Indexify为LLM应用提供实时数据更新。
通过Indexify的提取器从视频和音频中提取关键信息。
利用Indexify的SQL查询功能检索特定文档内容。
产品特色:
实时数据提取:支持从视频、音频和PDF中提取数据。
多模态支持:适用于文档、演示、视频和音频等多种数据类型。
自定义提取器:用户可以使用Indexify SDK创建自己的提取器。
语义搜索和SQL查询:简化非结构化数据的检索过程。
跨平台部署:支持在本地和Kubernetes等多种环境中部署。
自动扩展:能够处理大量数据,适应不同规模的需求。
端到端可观测性:提供系统的监控和优化工具。
使用教程:
1. 下载并启动Indexify服务器和提取器。
2. 创建提取图谱,定义数据提取的流程和规则。
3. 摄取文档、视频和文本等非结构化数据。
4. 使用预构建的提取器或自定义提取器进行数据转换或提取。
5. 通过语义搜索或SQL查询检索提取的数据。
6. 根据需要调整提取图谱,优化数据提取和检索过程。
7. 利用Indexify的自动扩展功能处理大规模数据。
8. 监控系统性能,确保数据提取和检索的效率和准确性。
浏览量:77
实时数据提取和检索框架
Indexify是一个开源数据框架,具有实时提取引擎和预构建的提取适配器,能够可靠地从各种非结构化数据(文档、演示文稿、视频和音频)中提取数据。它支持多模态数据,提供先进的嵌入和分块技术,并允许用户使用Indexify SDK创建自定义提取器。Indexify支持使用语义搜索和SQL查询图像、视频和PDF,确保LLM应用能够获取最准确、最新的数据。此外,Indexify能够在本地运行时进行原型设计,并在生产环境中利用预配置的Kubernetes部署模板,实现自动扩展和处理大量数据。
实时多模态内容审核平台
Seyft AI 是一个实时的多模态内容审核平台,能够过滤文本、图像和视频中的有害和不相关内容,确保合规性,并为不同的语言和文化背景提供个性化解决方案。该平台的主要优点包括实时审核、多语言支持、无需人工干预的图像和视频审核,以及易于集成的API。Seyft AI 的背景信息显示,它旨在帮助企业保持数字空间的清洁和安全,适用于需要内容审核的各种应用场景。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
实时多模态智能,适用于每台设备。
Cartesia提供实时多模态智能技术,旨在为各种设备提供服务。产品包括Sonic和On-Device两大核心功能。Sonic是快速、超逼真的生成性语音API,由下一代状态空间模型驱动。On-Device提供实时模型,能够在用户的设备上进行快速、私密、离线的推理。Cartesia的产品背景是满足用户对于实时智能服务的需求,特别是在隐私和速度方面。产品定位于提供高效、安全的技术解决方案,以支持各种设备上的智能应用。
多模态多视角视频数据集和基准挑战
Ego-Exo4D 是一个多模态多视角视频数据集和基准挑战,以捕捉技能人类活动的自我中心和外部中心视频为中心。它支持日常生活活动的多模态机器感知研究。该数据集由 839 位佩戴摄像头的志愿者在全球 13 个城市收集,捕捉了 1422 小时的技能人类活动视频。该数据集提供了专家评论、参与者提供的教程样式的叙述和一句话的原子动作描述等三种自然语言数据集,配对视频使用。Ego-Exo4D 还捕获了多视角和多种感知模态,包括多个视角、七个麦克风阵列、两个 IMUs、一个气压计和一个磁强计。数据集记录时严格遵守隐私和伦理政策,参与者的正式同意。欲了解更多信息,请访问官方网站。
AI多模态数据绑定
ImageBind是一种新的AI模型,能够同时绑定六种感官模态的数据,无需显式监督。通过识别这些模态之间的关系(图像和视频、音频、文本、深度、热成像和惯性测量单元(IMUs)),这一突破有助于推动AI发展,使机器能够更好地分析多种不同形式的信息。探索演示以了解ImageBind在图像、音频和文本模态上的能力。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
实时语音提取智能耳机交互系统
LookOnceToHear 是一种创新的智能耳机交互系统,允许用户通过简单的视觉识别来选择想要听到的目标说话者。这项技术在 CHI 2024 上获得了最佳论文荣誉提名。它通过合成音频混合、头相关传输函数(HRTFs)和双耳房间脉冲响应(BRIRs)来实现实时语音提取,为用户提供了一种新颖的交互方式。
智能文档处理平台,自动化数据提取
DOConvert是一个智能文档处理平台,可自动化提取各类文档的复杂数据,优化文档处理和集成流程,节省高达75%的数据录入成本。它支持主流的ERP系统,包括SAP、Salesforce等,也可自定义API集成到任何ERP或CMS系统。DOConvert最多可在10天内完全实施,从首次演示到定制解决方案、ERP连接、模板定制以及全自动化运行。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
全能AI工作空间,实时语音助手搭配多模态画布,助力高效创作与思考。
Albus AI是一个由人工智能驱动的平台,旨在为知识和创意专业人士提供高效的工作空间。通过实时语音助手和多模态画布,用户可以快速处理大量信息,激发新想法,节省宝贵的时间和注意力。该平台利用大型语言模型和机器学习服务,能够连接不同思想,避免用户在多个标签和应用之间来回切换。Albus AI的出现,为创意工作者、记者、研究人员等专业人士提供了强大的辅助工具,帮助他们更好地发挥人类智慧,为社会创造价值。目前,Albus AI提供有限的早期访问价格,订阅价格为9美元。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
GPT-4o,一款能够实时处理音频、视觉和文本的旗舰模型。
GPT-4o('o'代表'omni')是自然人机交互的重要一步,它可以接受任意组合的文本、音频、图像和视频输入,并生成任意组合的文本、音频和图像输出。它在音频输入响应上的速度极快,平均响应时间仅为320毫秒,与人类对话的响应时间相近。在非英语文本处理上取得了显著进步,同时在API上速度更快且成本降低了50%。GPT-4o在视觉和音频理解方面也比现有模型更出色。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
AI 网络爬虫,无需编码,即时数据提取。
BrowserAct是一款AI网页爬虫工具,能够即时从任何网站提取数据,无需编码,具有强大的数据提取能力。其主要优点在于自动隐藏广告和非必要元素,支持实时和持久数据访问,同时具有全球住宅IP网络等功能。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
为人工智能提供多模态数据支持的高效数据库解决方案。
Activeloop Deep Lake是一个专为人工智能设计的数据库,支持多模态数据(如文本、图像、视频等)的高效存储和检索。它通过优化数据处理流程,帮助企业和开发者快速构建和部署AI应用,显著提升数据准备和模型训练的效率。Deep Lake的技术优势在于其高性能、可扩展性和易用性,使其成为AI开发中的重要基础设施。产品主要面向企业级用户和AI开发者,提供灵活的定价方案以满足不同规模用户的需求。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
© 2025 AIbase 备案号:闽ICP备08105208号-14