需求人群:
"目标受众包括需要内容审核的企业和组织,如社交媒体平台、在线论坛、内容发布网站等。Seyft AI 适合他们,因为它提供了一个全面的审核解决方案,可以自动检测和过滤有害内容,减少人工审核的工作量,同时确保内容的合规性。"
使用场景示例:
社交媒体平台使用Seyft AI自动检测和过滤用户生成的有害内容。
在线教育平台利用Seyft AI确保学习材料中没有不当内容。
电子商务网站通过Seyft AI审核商品描述和用户评论,以维护健康的购物环境。
产品特色:
文本审核:检测和过滤多种语言中的有害文本。
图像审核:无需人工干预即可检测和过滤有害或显式图像。
视频审核:无需人工干预即可检测和过滤有害或显式视频。
API集成:轻松将Seyft AI的内容审核功能集成到现有应用程序和工作流程中。
可定制工作流:根据特定需求定制内容审核工作流。
报告和分析:获取有关内容审核活动的详细报告和分析。
使用教程:
1. 访问Seyft AI官方网站并注册账户。
2. 登录后,根据需要选择文本、图像或视频审核功能。
3. 配置审核参数,如语言、内容类型等。
4. 使用API将Seyft AI集成到现有应用程序中。
5. 根据业务需求定制审核工作流。
6. 审核内容时,Seyft AI将自动检测并标记有害内容。
7. 查看审核报告和分析,以优化审核策略。
8. 根据需要调整审核设置,以提高审核准确性和效率。
浏览量:65
实时多模态内容审核平台
Seyft AI 是一个实时的多模态内容审核平台,能够过滤文本、图像和视频中的有害和不相关内容,确保合规性,并为不同的语言和文化背景提供个性化解决方案。该平台的主要优点包括实时审核、多语言支持、无需人工干预的图像和视频审核,以及易于集成的API。Seyft AI 的背景信息显示,它旨在帮助企业保持数字空间的清洁和安全,适用于需要内容审核的各种应用场景。
新一代多模态内容审核模型
omni-moderation-latest 是基于 GPT-4o 构建的新一代多模态内容审核模型,它在文本和图像内容的有害信息检测方面更加精确,帮助开发者构建更强大的审核系统。该模型支持文本和图像输入,特别在非英语语言中表现更准确。它能够评估内容是否符合诸如仇恨、暴力、自残等类别,并且提供更细致的审核决策控制。此外,它还提供概率分数来反映内容与检测类别的匹配可能性。该模型对所有开发者免费开放,旨在帮助开发者从最新的研究和安全系统投资中受益。
实时表情生成人类模型
PROTEUS是Apparate Labs推出的一款下一代基础模型,用于实时表情生成人类。它采用先进的transformer架构的潜在扩散模型,创新的潜在空间设计实现了实时效率,并能通过进一步的架构和算法改进,达到每秒100帧以上视频流。PROTEUS旨在提供一种通过语音控制的视觉体现,为人工对话实体提供直观的接口,并且与多种大型语言模型兼容,可定制用于多种不同应用。
Gemini 2.5 是谷歌最智能的 AI 模型,具备推理能力。
Gemini 2.5 是谷歌推出的最先进的 AI 模型,具备高效的推理能力和编码性能,能够处理复杂问题,并在多项基准测试中表现出色。该模型引入了新的思维能力,结合增强的基础模型和后期训练,支持更复杂的任务,旨在为开发者和企业提供强大的支持。Gemini 2.5 Pro 可在 Google AI Studio 和 Gemini 应用中使用,适合需要高级推理和编码能力的用户。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
Mistral OCR 是一款强大的文档理解 OCR 产品,能够以极高的准确性从 PDF 和图像中提取文本、图像、表格和方程式。
Mistral OCR 是由 Mistral AI 开发的先进光学字符识别 API,旨在以无与伦比的准确性提取和结构化文档内容。它能够处理包含文本、图像、表格和方程式的复杂文档,输出 Markdown 格式的结果,便于与 AI 系统和检索增强生成(RAG)系统集成。其高精度、高速度和多模态处理能力使其在大规模文档处理场景中表现出色,尤其适用于科研、法律、客服和历史文献保护等领域。Mistral OCR 的定价为每美元 1000 页标准使用量,批量处理可达每美元 2000 页,还提供企业自托管选项,满足特定隐私需求。
基于Gemini 2.0的机器人模型,将AI带入物理世界,具备视觉、语言和动作能力。
Gemini Robotics是Google DeepMind推出的一种先进的人工智能模型,专为机器人应用而设计。它基于Gemini 2.0架构,通过视觉、语言和动作(VLA)的融合,使机器人能够执行复杂的现实世界任务。该技术的重要性在于它推动了机器人从实验室走向日常生活和工业应用的进程,为未来智能机器人的发展奠定了基础。Gemini Robotics的主要优点包括强大的泛化能力、交互性和灵巧性,使其能够适应不同的任务和环境。目前,该技术处于研究和开发阶段,尚未明确具体的价格和市场定位。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
智元发布首个通用具身基座大模型GO-1,开创性提出ViLLA架构,推动具身智能发展。
智元通用具身基座大模型GO-1是智元推出的一款革命性的人工智能模型。该模型基于创新的Vision-Language-Latent-Action(ViLLA)架构,通过多模态大模型(VLM)和混合专家(MoE)系统,实现了从视觉和语言输入到机器人动作执行的高效转换。GO-1能够利用人类视频和真实机器人数据进行学习,具备强大的泛化能力,能够在极少数据甚至零样本下快速适应新任务和环境。其主要优点包括高效的学习能力、强大的泛化性能以及对多种机器人本体的适配性。该模型的推出标志着具身智能向通用化、开放化和智能化方向迈出了重要一步,有望在商业、工业和家庭等多个领域发挥重要作用。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包,简化多智能体工作流的编排。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包。它基于 OpenAI 的先进模型能力,如高级推理、多模态交互和新的安全技术,为开发者提供了一种简化的方式来构建、部署和扩展可靠的智能体应用。该工具包不仅支持单智能体和多智能体工作流的编排,还集成了可观测性工具,帮助开发者追踪和优化智能体的执行流程。其主要优点包括易于配置的 LLM 模型、智能的智能体交接机制、可配置的安全检查以及强大的调试和性能优化功能。该工具包适用于需要自动化复杂任务的企业和开发者,旨在通过智能体技术提升生产力和效率。
SmolVLM2 是一个专注于视频内容分析和生成的轻量化语言模型。
SmolVLM2 是一种轻量级的视频语言模型,旨在通过分析视频内容生成相关的文本描述或视频亮点。该模型具有高效性、低资源消耗的特点,适合在多种设备上运行,包括移动设备和桌面客户端。其主要优点是能够快速处理视频数据并生成高质量的文本输出,为视频内容创作、视频分析和教育等领域提供了强大的技术支持。该模型由 Hugging Face 团队开发,定位为高效、轻量化的视频处理工具,目前处于实验阶段,用户可以免费试用。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
Aya Vision 是 Cohere 推出的多语言多模态视觉模型,旨在提升多语言场景下的视觉和文本理解能力。
Aya Vision 是 Cohere For AI 团队开发的先进视觉模型,专注于多语言多模态任务,支持 23 种语言。该模型通过创新的算法突破,如合成标注、多语言数据扩展和多模态模型融合,显著提升了视觉和文本任务的性能。其主要优点包括高效性(在计算资源有限的情况下仍能表现出色)和广泛的多语言支持。Aya Vision 的发布旨在推动多语言多模态研究的前沿发展,并为全球研究社区提供技术支持。
EgoLife是一个长期、多模态、多视角的日常生活AI助手项目,旨在推进长期上下文理解研究。
EgoLife是一个面向长期、多模态、多视角日常生活的AI助手项目。该项目通过记录六名志愿者一周的共享生活体验,生成了约50小时的视频数据,涵盖日常活动、社交互动等场景。其多模态数据(包括视频、视线、IMU数据)和多视角摄像头系统为AI研究提供了丰富的上下文信息。此外,该项目提出了EgoRAG框架,用于解决长期上下文理解任务,推动了AI在复杂环境中的应用能力。
UniTok是一个用于视觉生成和理解的统一视觉分词器。
UniTok是一种创新的视觉分词技术,旨在弥合视觉生成和理解之间的差距。它通过多码本量化技术,显著提升了离散分词器的表示能力,使其能够捕捉到更丰富的视觉细节和语义信息。这一技术突破了传统分词器在训练过程中的瓶颈,为视觉生成和理解任务提供了一种高效且统一的解决方案。UniTok在图像生成和理解任务中表现出色,例如在ImageNet上实现了显著的零样本准确率提升。该技术的主要优点包括高效性、灵活性以及对多模态任务的强大支持,为视觉生成和理解领域带来了新的可能性。
ViDoRAG 是一个结合视觉文档检索增强生成的动态迭代推理代理框架。
ViDoRAG 是阿里巴巴自然语言处理团队开发的一种新型多模态检索增强生成框架,专为处理视觉丰富文档的复杂推理任务设计。该框架通过动态迭代推理代理和高斯混合模型(GMM)驱动的多模态检索策略,显著提高了生成模型的鲁棒性和准确性。ViDoRAG 的主要优点包括高效处理视觉和文本信息、支持多跳推理以及可扩展性强。该框架适用于需要从大规模文档中检索和生成信息的场景,例如智能问答、文档分析和内容创作。其开源特性和灵活的模块化设计使其成为研究人员和开发者在多模态生成领域的重要工具。
Migician 是一个专注于多图像定位的多模态大语言模型,能够实现自由形式的多图像精确定位。
Migician 是清华大学自然语言处理实验室开发的一种多模态大语言模型,专注于多图像定位任务。该模型通过引入创新的训练框架和大规模数据集 MGrounding-630k,显著提升了多图像场景下的精确定位能力。它不仅超越了现有的多模态大语言模型,甚至在性能上超过了更大规模的 70B 模型。Migician 的主要优点在于其能够处理复杂的多图像任务,并提供自由形式的定位指令,使其在多图像理解领域具有重要的应用前景。该模型目前在 Hugging Face 上开源,供研究人员和开发者使用。
Mochii AI 是一款由尖端模型支持的个性化人工智能生态系统,助力人类与 AI 协作的未来。
Mochii AI 旨在通过自适应记忆、自定义个性和无缝多平台集成,推动人类与人工智能的协作。它支持多种高级 AI 模型,如 OpenAI、Claude、Gemini、DALL-E 和 Stable Diffusion,能够实现智能对话、内容创作、数据分析和图像生成等功能。产品提供免费层级,无需信用卡即可使用,适合希望提升工作效率和创造力的专业人士。
一个基于 React 和 Cloudflare Pages 的多人 AI 聊天应用,支持多个 AI 角色同时参与对话。
botgroup.chat 是一个创新的多人 AI 聊天应用,它利用先进的 AI 技术,为用户提供类似群聊的交互体验。用户可以与多个 AI 角色进行实时对话,这些角色具有不同的性格和功能。该产品基于 React 和 Cloudflare Pages 开发,具有高性能和可扩展性。它不仅为用户提供了一个有趣的聊天环境,还可以用于教育、娱乐和商业等多种场景。目前该产品免费提供给用户使用,旨在为广泛的用户提供便捷的 AI 聊天服务。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
TheoremExplainAgent 是一个用于生成多模态定理解释视频的智能系统。
TheoremExplainAgent 是一款基于人工智能的模型,专注于为数学和科学定理生成详细的多模态解释视频。它通过结合文本和视觉动画,帮助用户更深入地理解复杂概念。该产品利用 Manim 动画技术生成超过 5 分钟的长视频,填补了传统文本解释的不足,尤其在揭示推理错误方面表现出色。它主要面向教育领域,旨在提升学习者对 STEM 领域定理的理解能力,目前尚未明确其价格和商业化定位。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
Phi-4-multimodal-instruct 是微软开发的轻量级多模态基础模型,支持文本、图像和音频输入。
Phi-4-multimodal-instruct 是微软开发的多模态基础模型,支持文本、图像和音频输入,生成文本输出。该模型基于Phi-3.5和Phi-4.0的研究和数据集构建,经过监督微调、直接偏好优化和人类反馈强化学习等过程,以提高指令遵循能力和安全性。它支持多种语言的文本、图像和音频输入,具有128K的上下文长度,适用于多种多模态任务,如语音识别、语音翻译、视觉问答等。该模型在多模态能力上取得了显著提升,尤其在语音和视觉任务上表现出色。它为开发者提供了强大的多模态处理能力,可用于构建各种多模态应用。
Magma-8B 是微软推出的一款多模态 AI 模型,能够处理图像和文本输入并生成文本输出。
Magma-8B 是微软开发的一款多模态 AI 基础模型,专为研究多模态 AI 代理而设计。它结合了文本和图像输入,能够生成文本输出,并具备视觉规划和代理能力。该模型使用了 Meta LLaMA-3 作为语言模型骨干,并结合 CLIP-ConvNeXt-XXLarge 视觉编码器,支持从无标签视频数据中学习时空关系,具有强大的泛化能力和多任务适应性。Magma-8B 在多模态任务中表现出色,特别是在空间理解和推理方面。它为多模态 AI 研究提供了强大的工具,推动了虚拟和现实环境中复杂交互的研究。
DeepSeek 是一款先进的 AI 语言模型,擅长逻辑推理、数学和编程任务,提供免费使用。
DeepSeek 是由 High-Flyer 基金支持的中国 AI 实验室开发的先进语言模型,专注于开源模型和创新训练方法。其 R1 系列模型在逻辑推理和问题解决方面表现出色,采用强化学习和混合专家框架优化性能,以低成本实现高效训练。DeepSeek 的开源策略推动了社区创新,同时引发了关于 AI 竞争和开源模型影响力的行业讨论。其免费且无需注册的使用方式进一步降低了用户门槛,适合广泛的应用场景。
ZeroBench 是一个针对当代大型多模态模型的高难度视觉基准测试。
ZeroBench 是一个专为评估大型多模态模型(LMMs)视觉理解能力而设计的基准测试。它通过 100 个精心设计且经过严格审查的复杂问题,以及 334 个子问题,挑战当前模型的极限。该基准测试旨在填补现有视觉基准的不足,提供更具挑战性和高质量的评估工具。ZeroBench 的主要优点是其高难度、轻量级、多样化和高质量的特点,使其能够有效区分模型的性能。此外,它还提供了详细的子问题评估,帮助研究人员更好地理解模型的推理能力。
Magma 是一个能够理解和执行多模态输入的基础模型,可用于复杂任务和环境。
Magma 是微软研究团队推出的一个多模态基础模型,旨在通过视觉、语言和动作的结合,实现复杂任务的规划和执行。它通过大规模的视觉语言数据预训练,具备了语言理解、空间智能和动作规划的能力,能够在 UI 导航、机器人操作等任务中表现出色。该模型的出现为多模态 AI 代理任务提供了一个强大的基础框架,具有广泛的应用前景。
xAI推出的最新旗舰AI模型Grok 3,具备强大的推理和多模态处理能力。
Grok 3是由Elon Musk的AI公司xAI开发的最新旗舰AI模型。它在计算能力和数据集规模上显著提升,能够处理复杂的数学、科学问题,并支持多模态输入。其主要优点是推理能力强大,能够提供更准确的答案,并且在某些基准测试中超越了现有的顶尖模型。Grok 3的推出标志着xAI在AI领域的进一步发展,旨在为用户提供更智能、更高效的AI服务。该模型目前主要通过Grok APP和X平台提供服务,未来还将推出语音模式和企业API接口。其定位是高端AI解决方案,主要面向需要深度推理和多模态交互的用户。
© 2025 AIbase 备案号:闽ICP备08105208号-14