需求人群:
"CAP4D的目标受众包括游戏开发者、电影和视频制作人员、虚拟现实内容创作者以及任何需要创建逼真人像化身的专业人士。这些用户可以从CAP4D的高质量图像生成和实时渲染功能中受益,以提高他们产品的逼真度和互动性。"
使用场景示例:
游戏开发者使用CAP4D创建逼真的游戏角色。
电影制作人员利用CAP4D生成电影中的虚拟角色。
虚拟现实公司使用CAP4D为VR体验创建交互式角色。
产品特色:
• 多视图图像生成:从参考图像生成不同视角和表情的图像。
• 实时渲染:生成的4D化身可以实时渲染,适用于动态场景。
• 3DMM控制:通过3D形态混合模型(3D Morphable Models)控制化身的表情和动作。
• 扩散模型应用:利用最新的扩散模型技术生成高质量图像。
• 交互式查看器:用户可以在浏览器中实时渲染4D化身。
• 编辑和照明调整:可以对化身的外貌和照明进行编辑,以适应不同的视觉效果。
• 音频驱动动画:通过语音驱动的动画模型,如CodeTalker,使化身能够根据输入音频进行动画制作。
使用教程:
1. 访问CAP4D的GitHub页面并下载相关代码。
2. 准备或选择一组参考图像,用于生成化身。
3. 使用CAP4D提供的模型和工具,从参考图像生成多视角图像。
4. 利用3DMM技术适配和控制生成的图像,创建4D化身。
5. 在浏览器中使用交互式查看器实时预览化身。
6. 如有需要,使用图像编辑工具对化身的外貌和照明进行调整。
7. 利用语音驱动的动画模型为化身添加动作,使其根据音频进行动画制作。
8. 将最终的4D化身集成到游戏、电影或其他媒体项目中。
浏览量:84
最新流量情况
月访问量
357
平均访问时长
00:00:06
每次访问页数
1.38
跳出率
37.63%
流量来源
直接访问
46.26%
自然搜索
28.40%
邮件
0.06%
外链引荐
6.23%
社交媒体
17.98%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
创建可动的4D人像化身模型
CAP4D是一种利用可变形多视图扩散模型(Morphable Multi-View Diffusion Models)来创建4D人像化身的技术。它能够从任意数量的参考图像生成不同视角和表情的图像,并将其适配到一个4D化身上,该化身可以通过3DMM控制并实时渲染。这项技术的主要优点包括高度逼真的图像生成、多视角的适应性以及实时渲染的能力。CAP4D的技术背景是基于深度学习和图像生成领域的最新进展,尤其是在扩散模型和3D面部建模方面。由于其高质量的图像生成和实时渲染能力,CAP4D在娱乐、游戏开发、虚拟现实等领域具有广泛的应用前景。目前,该技术是免费提供代码的,但具体的商业化应用可能需要进一步的授权和定价。
高保真文本到4D生成
4D-fy是一种文本到4D生成方法,通过混合分数蒸馏采样技术,结合了多种预训练扩散模型的监督信号,实现了高保真的文本到4D场景生成。其方法通过神经表示参数化4D辐射场,使用静态和动态多尺度哈希表特征,并利用体积渲染从表示中渲染图像和视频。通过混合分数蒸馏采样,首先使用3D感知文本到图像模型(3D-T2I)的梯度来优化表示,然后结合文本到图像模型(T2I)的梯度来改善外观,最后结合文本到视频模型(T2V)的梯度来增加场景的运动。4D-fy可以生成具有引人入胜外观、3D结构和运动的4D场景。
4D重建模型,快速生成动画对象
L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。
4D场景创建工具,使用多视图视频扩散模型
CAT4D是一个利用多视图视频扩散模型从单目视频中生成4D场景的技术。它能够将输入的单目视频转换成多视角视频,并重建动态的3D场景。这项技术的重要性在于它能够从单一视角的视频资料中提取并重建出三维空间和时间的完整信息,为虚拟现实、增强现实以及三维建模等领域提供了强大的技术支持。产品背景信息显示,CAT4D由Google DeepMind、Columbia University和UC San Diego的研究人员共同开发,是一个前沿的科研成果转化为实际应用的案例。
从单目视频生成高质量4D对象的新型框架
DreamMesh4D是一个结合了网格表示与稀疏控制变形技术的新型框架,能够从单目视频中生成高质量的4D对象。该技术通过结合隐式神经辐射场(NeRF)或显式的高斯绘制作为底层表示,解决了传统方法在空间-时间一致性和表面纹理质量方面的挑战。DreamMesh4D利用现代3D动画流程的灵感,将高斯绘制绑定到三角网格表面,实现了纹理和网格顶点的可微优化。该框架开始于由单图像3D生成方法提供的粗糙网格,通过均匀采样稀疏点来构建变形图,以提高计算效率并提供额外的约束。通过两阶段学习,结合参考视图光度损失、得分蒸馏损失以及其他正则化损失,实现了静态表面高斯和网格顶点以及动态变形网络的学习。DreamMesh4D在渲染质量和空间-时间一致性方面优于以往的视频到4D生成方法,并且其基于网格的表示与现代几何流程兼容,展示了其在3D游戏和电影行业的潜力。
一种基于表面的4D运动建模算法,用于动态人体渲染
SurMo是一种新的动态人体渲染范式,通过联合建模时间运动动力学和人体外观,在一个统一的框架中实现高保真的人体渲染。该方法采用基于表面的三平面表示法高效编码人体运动,并设计了物理运动解码模块和4D外观解码模块,能够合成时变的人体外观效果,如衣服皱褶、运动阴影等。相比于现有方法,SurMo在定量和定性渲染指标上都有显著提升。
从单目视频重建时间一致的4D人体模型
DressRecon是一个用于从单目视频重建时间一致的4D人体模型的方法,专注于处理非常宽松的服装或手持物体交互。该技术结合了通用的人体先验知识(从大规模训练数据中学习得到)和针对单个视频的特定“骨骼袋”变形(通过测试时优化进行拟合)。DressRecon通过学习一个神经隐式模型来分离身体与服装变形,作为单独的运动模型层。为了捕捉服装的微妙几何形状,它利用基于图像的先验知识,如人体姿势、表面法线和光流,在优化过程中进行调整。生成的神经场可以提取成时间一致的网格,或者进一步优化为显式的3D高斯,以提高渲染质量和实现交互式可视化。DressRecon在包含高度挑战性服装变形和物体交互的数据集上,提供了比以往技术更高的3D重建保真度。
3D建模无忧
Sloyd是一个快速生成3D模型的平台。选择一个生成器,进行微调,即可完成。可以通过实时预览来生成模型。Sloyd提供不断扩展的生成器库,快速定制模型,可用于实时渲染和多种级别的细节。生成的模型可以根据需要进行定制,并且已经进行了UV展开和优化,方便进行贴图和使用。Sloyd适用于各种风格的模型,提供无限的变化,并且支持实时生成。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
3D建模与渲染工具
Kirin3d是一款专业的3D建模与渲染工具,提供强大的功能和优秀的渲染效果。它能够帮助用户快速创建逼真的3D模型,并进行高质量的渲染。Kirin3d的定价灵活合理,适合个人和团队使用。无论是建筑设计、游戏开发还是影视特效制作,Kirin3d都是您理想的选择。
一种用于实时渲染大型数据集的分层3D高斯表示方法
这项研究提出了一种新的分层3D高斯表示方法,用于实时渲染非常大的数据集。该方法通过3D高斯splatting技术提供了优秀的视觉质量、快速的训练和实时渲染能力。通过分层结构和有效的细节层次(Level-of-Detail, LOD)解决方案,可以高效渲染远处内容,并在不同层次之间实现平滑过渡。该技术能够适应可用资源,通过分而治之的方法训练大型场景,并将其整合到一个可以进一步优化以提高高斯合并到中间节点时的视觉质量的层级结构中。
GauHuman是一个3D人体模型,利用高斯扩散进行快速训练和实时渲染。
GauHuman是一个基于高斯扩散的3D人体模型,它能在短时间内(1-2分钟)完成训练,并提供实时渲染(最高达189 FPS),与现有基于NeRF的隐式表示建模框架相比,后者需要数小时训练和每帧数秒渲染。GauHuman在规范空间对高斯扩散进行编码,并利用线性混合皮肤(LBS)将3D高斯从规范空间转换到姿态空间,在此过程中设计了有效的姿态和LBS细化模块,以微不足道的计算成本学习3D人体的细节。此外,GauHuman还通过3D人体先验初始化和修剪3D高斯,并通过KL散度引导进行拆分/克隆,以及进一步加速的新型合并操作,从而实现快速优化。
从单张图片创建可控3D和4D场景的视频扩散模型
DimensionX是一个基于视频扩散模型的3D和4D场景生成技术,它能够从单张图片中创建出具有可控视角和动态变化的三维和四维场景。这项技术的主要优点包括高度的灵活性和逼真度,能够根据用户提供的提示词生成各种风格和主题的场景。DimensionX的背景信息显示,它是由一群研究人员共同开发的,旨在推动图像生成技术的发展。目前,该技术是免费提供给研究和开发社区使用的。
高质量3D数字化身生成模型
RODIN Diffusion是一款AI系统,可自动生成高度详细的3D数字化身。生成的数字化身可以以前所未有的质量自由地360度查看。该模型显著加速了传统复杂的3D建模过程,并为3D艺术家开辟了新的机会。 RODIN模型架构:该3D数字化身扩散模型经过训练,可以生成以神经辐射场表示的3D数字化身。我们基于最先进的生成技术(扩散模型)进行3D建模。我们使用三平面表示来分解数字化身的神经辐射场,可以通过扩散模型明确地对其进行建模,并通过体积渲染将其渲染为图像。所提出的3D感知卷积在保持3D扩散建模完整性的同时带来了所需的计算效率。整个生成过程是一个分层过程,使用级联扩散模型进行多尺度建模。一旦训练了生成模型,就可以根据来自输入图像、文本提示或随机噪声的潜在代码来控制数字化身生成。 RODIN Diffusion模型的可视化。请参阅论文Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion以获取更多详细信息。
使用单眼视频记录产生实时4D头像合成的神经网络方法
BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。
音频驱动的高保真3D人头化身合成技术
GaussianSpeech是一种新颖的方法,它能够从语音信号中合成高保真度的动画序列,创建逼真、个性化的3D人头化身。该技术通过结合语音信号与3D高斯绘制技术,捕捉人类头部表情和细节动作,包括皮肤皱褶和更细微的面部运动。GaussianSpeech的主要优点包括实时渲染速度、自然的视觉动态效果,以及能够呈现多样化的面部表情和风格。该技术背后是大规模多视角音频-视觉序列数据集的创建,以及音频条件变换模型的开发,这些模型能够直接从音频输入中提取唇部和表情特征。
实时编辑和完整对象结构生成的3D模型。
Stable Point Aware 3D (SPAR3D) 是 Stability AI 推出的先进3D生成模型。它能够在不到一秒的时间内,从单张图像中实现3D对象的实时编辑和完整结构生成。SPAR3D采用独特的架构,结合精确的点云采样与先进的网格生成技术,为3D资产创建提供了前所未有的控制力。该模型免费提供给商业和非商业用途,可在Hugging Face下载权重,GitHub获取代码,或通过Stability AI开发者平台API访问。
将图像转换为3D模型,可用于渲染、动画或3D打印。
Shapen是一款创新的在线工具,它利用先进的图像处理和3D建模技术,将2D图像转化为详细的3D模型。这一技术对于设计师、艺术家和创意工作者来说是一个巨大的突破,因为它极大地简化了3D模型的创建过程,降低了3D建模的门槛。用户无需深厚的3D建模知识,只需上传图片,即可快速生成可用于渲染、动画制作或3D打印的模型。Shapen的出现,为创意表达和产品设计带来了全新的可能性,其定价策略和市场定位也使其成为个人创作者和小型工作室的理想选择。
实时3D角色生成平台
Museclip是一个基于3D模型的实时人物设计平台,拥有智能编辑、魔法画笔和文字提示等功能,可以在几秒内将3D人物基础模型转换成逼真的角色形象,大幅提高人物设计的效率。它的主要优势有:实时渲染技术,快速定制化,智能简洁的设计流程,为用户提供极大的创作自由度。
高效渲染大规模场景的实时视图合成技术
Level of Gaussians (LoG) 是一种用于高效渲染三维场景的新技术,它通过树状结构存储高斯基元,并通过渐进式训练策略从图像中端到端重建,有效克服局部最小值,实现实时渲染数百万平方千米的区域,是渲染大规模场景的重要进步。
3D 服装仿真建模软件,提升设计效率,降低样衣损耗。
Style3D是一款全新的 3D 服装仿真建模软件,采用了最新的 AI 技术来提升服装设计的效率和精准度。该软件不仅可以大幅降低实物样衣的制作成本,还能在设计阶段进行实时的效果评估和修改,使设计师能够更快速地迭代设计方案。由于其强大的模拟能力和直观的用户界面,Style3D被广泛应用于时尚、动画和游戏等多个行业。该软件的定价为付费制,用户可以根据需求选择不同的订阅方案。
DiffPortrait3D可以从野外单张人像照片中合成逼真的3D一致新视角。
DiffPortrait3D是一个条件化难度模型,即使只有野外单张人像照片,也能合成逼真的3D一致新视角。具体来说,给定单张RGB输入图像,我们目标是合成从新相机视角渲染的似是而非的面部细节,同时保留身份和面部表达。我们的零试验方法可以很好地推广到任意面部人像,具有非姿态相机视角,极端面部表情和多种艺术描绘。在其核心,我们利用在大规模图像数据集上预训练的2D难度模型的生成先验作为我们的呈现主干,同时通过解耦外观和相机姿势的定向注意控制来指导去噪。为此,我们首先从参考图像将外观上下文注入冻结的UNet的自我注意力层。然后通过一种新颖的条件控制模块来操纵呈现视图,该模块通过观看来自同一视图的交叉主体的条件图像来解释相机姿势。 此外,我们插入了一个可训练的跨视图注意力模块来增强视图一致性,后者通过在推理期间采用一种新的3D感知噪声生成过程进一步加强。我们在具有挑战性的野外和多视图基准测试中定性和定量地证明了最先进的结果。
分钟级创建3D可视化与渲染工具
Coohom是一款全能的室内设计工具,可以在10分钟内建立一个3D家居模型,并在1分钟内渲染出精美的视频。其功能包括2D/3D楼层规划、AI摄影、定制家具设计等。Coohom还提供企业版服务,帮助企业提高效率和创意。
基于Gradio的实时人像动画Web界面
AdvancedLivePortrait-WebUI是一个基于Gradio框架开发的Web界面,用于实时人像动画编辑。该技术允许用户通过上传图片来编辑人物的面部表情,实现了高效的肖像动画制作。它基于LivePortrait算法,利用深度学习技术进行面部特征的捕捉和动画制作,具有操作简便、效果逼真的优点。产品背景信息显示,它是由jhj0517开发的开源项目,适用于需要进行人像动画制作的专业人士和爱好者。目前该项目是免费的,并且开源,用户可以自由使用和修改。
3D AI 化身,将文本快速转换为视频。
Rendora 提供一个创新的平台,使用户能够通过3D AI技术将文本内容快速转换为高质量的3D视频。该技术结合了先进的3D图形引擎和人工智能算法,允许用户创建逼真的3D AI化身,并在专业3D场景中进行视频制作。产品的主要优点包括无需演员、易于编辑、支持多样化的自定义选项,以及无需专业技能即可生成专业级别的视频内容。
高效处理分钟级体素视频数据的新技术
Long Volumetric Video是一种用于重建多视角RGB视频中的长体素视频的新技术。该技术通过Temporal Gaussian Hierarchy这种新颖的4D表示方法,紧凑地模拟长体素视频,解决了传统动态视图合成方法在处理长视频时内存占用大、渲染速度慢的问题。这项技术的主要优点包括训练成本低、渲染速度快和存储使用少,是首个能够高效处理分钟级体素视频数据同时保持高质量渲染的技术。
© 2025 AIbase 备案号:闽ICP备08105208号-14