需求人群:
"目标受众为需要进行人像动画制作的专业人士和爱好者,包括视频制作者、游戏开发者、动画师等。该产品提供了一个简单易用的界面,使得用户无需复杂的编程知识即可进行高质量的人像动画制作,特别适合需要快速、高效制作动画的用户。"
使用场景示例:
视频制作者使用该技术为视频角色添加逼真的面部表情。
游戏开发者利用该技术为游戏角色创建动态的面部动画。
社交媒体用户使用该技术制作有趣的人像动画视频。
产品特色:
- 人像动画编辑:用户可以上传图片,编辑人物的面部表情。
- 基于Gradio框架:提供了一个简洁易用的Web界面。
- 支持多种表情调整:包括AAA、EEE、Eyebrow、Wink等多种面部表情的调整。
- 深度学习技术:利用深度学习进行面部特征的捕捉和动画制作。
- 开源项目:代码开源,用户可以自由使用和修改。
- 跨平台支持:支持在多种操作系统上运行。
- 易于部署:提供Docker支持,方便用户快速部署。
使用教程:
1. 访问项目网址并克隆代码到本地。
2. 安装所需的依赖包。
3. 运行app.py文件启动Web界面。
4. 在Web界面中上传图片,选择需要编辑的面部表情。
5. 调整参数,预览动画效果。
6. 导出编辑后的动画或图片。
浏览量:16
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
基于Gradio的实时人像动画Web界面
AdvancedLivePortrait-WebUI是一个基于Gradio框架开发的Web界面,用于实时人像动画编辑。该技术允许用户通过上传图片来编辑人物的面部表情,实现了高效的肖像动画制作。它基于LivePortrait算法,利用深度学习技术进行面部特征的捕捉和动画制作,具有操作简便、效果逼真的优点。产品背景信息显示,它是由jhj0517开发的开源项目,适用于需要进行人像动画制作的专业人士和爱好者。目前该项目是免费的,并且开源,用户可以自由使用和修改。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
新一代大模型架构,超越 Transformer。
RWKV 是一种革新的深度学习架构,结合了 RNN 和 Transformer 的最佳特性。它提供出色的性能,快速的推理和训练,并且不依赖自注意力机制,节省 VRAM,支持 ' 无限 ' 的上下文长度。RWKV 在多个语言和编码中表现出色,成为全球开发者的热门选择,推动了开源大语言模型的进步。
开源实现分布式低通信AI模型训练
OpenDiLoCo是一个开源框架,用于实现和扩展DeepMind的分布式低通信(DiLoCo)方法,支持全球分布式AI模型训练。它通过提供可扩展的、去中心化的框架,使得在资源分散的地区也能高效地进行AI模型的训练,这对于推动AI技术的普及和创新具有重要意义。
下一代开源AI模型,性能卓越。
Gemma 2是谷歌DeepMind推出的下一代开源AI模型,提供9亿和27亿参数版本,具有卓越的性能和推理效率,支持在不同硬件上以全精度高效运行,大幅降低部署成本。Gemma 2在27亿参数版本中,提供了两倍于其大小模型的竞争力,并且可以在单个NVIDIA H100 Tensor Core GPU或TPU主机上实现,显著降低部署成本。
OOTDiffusion是一个高度可控的虚拟服装试穿开源工具
OOTDiffusion是一个基于潜在扩散模型的虚拟服装试穿开源工具。它支持半身和全身两种模型,可以实现服装的自然融合。用户可以通过调节各种参数实现对试穿效果的精确控制,满足不同的需求。该工具开源在GitHub上,已获得超过300星的关注。
快速准确的文件类型识别工具
Magika是一个由谷歌研发的快速准确的文件类型识别工具,基于深度学习模型,可以在毫秒级时间内识别二进制文件和文本文件类型。它的准确率明显高于其他现有工具,尤其在识别代码文件和配置文件时效果更佳。
开源分布式深度学习工具
The Microsoft Cognitive Toolkit(CNTK)是一个开源的商业级分布式深度学习工具。它通过有向图描述神经网络的计算步骤,支持常见的模型类型,并实现了自动微分和并行计算。CNTK支持64位Linux和Windows操作系统,可以作为Python、C或C++程序的库使用,也可以通过其自身的模型描述语言BrainScript作为独立的机器学习工具使用。
开源的GenAI应用网关,快速构建个性化的AI应用
Arch是一个开源的网关,专为处理提示(prompts)而设计,它利用快速的大型语言模型(LLMs)来处理提示,并与后端系统无缝集成。Arch基于Envoy构建,支持任何应用程序语言,并提供快速部署和透明升级。它提供了包括流量管理、前端/边缘网关、监控和端到端追踪在内的多种功能,帮助开发者构建快速、健壮和个性化的GenAI应用。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
免费 npm 库,用 Llama 3.2 Vision 进行 OCR,输出 markdown 文本
开源 npm 库,免费使用 Llama 3.2 Vision 进行 OCR,支持本地和远程图像,计划支持 PDF,受 Zerox 启发,有免费和付费接口
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的7B参数代码生成模型
Qwen2.5-Coder-7B是基于Qwen2.5的大型语言模型,专注于代码生成、代码推理和代码修复。它在5.5万亿的训练令牌上进行了扩展,包括源代码、文本代码接地、合成数据等,是目前开源代码语言模型的最新进展。该模型不仅在编程能力上与GPT-4o相匹配,还保持了在数学和一般能力上的优势,并支持长达128K令牌的长上下文。
图像水印技术,可在图片中嵌入局部化水印信息
Watermark Anything是一个由Facebook Research开发的图像水印技术,它允许在图片中嵌入一个或多个局部化水印信息。这项技术的重要性在于它能够在保证图像质量的同时,实现对图像内容的版权保护和追踪。该技术背景是基于深度学习和图像处理的研究,主要优点包括高鲁棒性、隐蔽性和灵活性。产品定位为研究和开发用途,目前是免费提供给学术界和开发者使用。
Qwen2.5-Coder系列中的14B参数代码生成模型
Qwen2.5-Coder-14B-Instruct是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前开源代码LLM的最新技术。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列专为代码生成设计的Qwen大型语言模型,包含0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前最先进的开源代码生成大型语言模型,其编码能力与GPT-4o相匹配。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
开源AI开发者助手,提升开发效率。
OpenHands是由All Hands AI开发的开源AI软件工程师,旨在帮助开发者处理积压的工作,让他们能够专注于解决难题、创造性挑战和过度工程化他们的配置文件。该产品在SWE-bench验证问题集中解决了超过一半的问题,是首个得分超过50%的AI工程师。此外,来自十几个学术机构的顶级代码生成研究人员每天都在帮助改进它。OpenHands在GitHub上以MIT许可证开源,拥有35k星标和190+贡献者。它与AI安全专家如Invariant Labs合作,以平衡创新与安全。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
自托管的网页数据抓取工具
Scraperr是一个自托管的网页数据抓取工具,允许用户通过指定XPath来抓取网页上的元素。用户可以提交URL和相应的元素进行抓取,结果会以表格形式展示,并支持下载为Excel文件。该工具的主要优点包括用户友好的界面、灵活的XPath选择器、批量处理能力以及对AI技术的支持。Scraperr适用于需要从网页上提取大量数据的用户,无论是研究人员、开发者还是市场营销人员。
开源、自托管、AI驱动的应用构建器。
Srcbook是一个开源、自托管的AI驱动应用构建器,它允许用户快速构建和部署各种应用程序。产品背景信息显示,Srcbook旨在提供一个平台,让开发者和非技术用户都能够轻松地构建应用程序,从而提高生产力和创新能力。它支持多种应用场景,如项目管理工具、音乐发现页面、技术文档网站等。Srcbook的主要优点包括开源性、灵活性和易用性,用户可以根据自己的需求定制和扩展功能。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
代码审查助手,确保代码无缺陷。
Panto AI 是一个编程辅助工具,通过代码审查来预防缺陷代码进入生产环境。它通过全天候运作,暴露代码中的漏洞并建议修复措施,确保只有无缺陷的代码被推送到生产环境。Panto AI 不仅检查错误,还理解代码背后的意图,并与知识库无缝集成,提供更智能的洞察。产品背景信息显示,Panto AI 已经开源其代码,并在GitHub上获得社区支持。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
构建视频搜索和摘要代理,提取视频洞察
NVIDIA Video Search and Summarization 是一个利用深度学习和人工智能技术,能够处理大量实时或存档视频,并从中提取信息以进行摘要和交互式问答的模型。该产品代表了视频内容分析和处理技术的最新进展,它通过生成式AI和视频到文本的技术,为用户提供了一种全新的视频内容管理和检索方式。NVIDIA Video Search and Summarization 的主要优点包括高效的视频内容分析、准确的摘要生成和交互式问答能力,这些功能对于需要处理大量视频数据的企业来说至关重要。产品背景信息显示,NVIDIA 致力于通过其先进的AI模型,推动视频内容的智能化处理和分析。
© 2024 AIbase 备案号:闽ICP备08105208号-14