需求人群:
"GenXD的目标受众是计算机视觉、图形学和机器学习领域的研究人员和开发者。这个框架适合他们,因为它提供了一个强大的工具来生成和研究3D和4D场景,这对于开发新的算法和应用,如虚拟现实、增强现实和自动驾驶等领域至关重要。"
使用场景示例:
研究人员使用GenXD生成3D和4D场景,以测试和改进他们的算法。
开发者利用GenXD框架创建虚拟现实和增强现实应用。
自动驾驶技术公司使用GenXD生成的场景进行模拟测试,以提高系统的安全性和效率。
产品特色:
- 多视图-时间模块:分离相机和物体运动,从3D和4D数据中学习。
- 掩码潜在条件:支持多种条件视图,增加模型的灵活性。
- 3D和4D场景生成:能够生成遵循相机轨迹的视频和一致的3D视图。
- 广泛的评估:在多个现实世界和合成数据集上展示其有效性。
- 数据策划流程:从视频中获取相机姿态和物体运动强度。
- 大规模4D场景数据集:CamVid-30K,包含30K视频和4D注释。
- 动态3D任务:数据集可用于各种动态3D任务。
使用教程:
1. 访问GenXD的官方网站以获取更多信息和下载代码。
2. 阅读GenXD的论文,了解其背后的原理和技术细节。
3. 根据提供的代码和文档,设置和配置GenXD框架。
4. 使用CamVid-30K数据集或自己的数据集来训练和测试GenXD模型。
5. 利用GenXD的多视图-时间模块和掩码潜在条件来生成3D和4D场景。
6. 评估生成的场景,并根据需要调整模型参数以优化结果。
7. 将GenXD集成到自己的项目中,开发新的应用或进行研究。
浏览量:7
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
自监督触觉表示,用于基于视觉的触觉传感。
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
基于重力视角坐标恢复世界定位的人体运动
GVHMR是一种创新的人体运动恢复技术,它通过重力视角坐标系统来解决从单目视频中恢复世界定位的人体运动的问题。该技术能够减少学习图像-姿态映射的歧义,并且避免了自回归方法中连续图像的累积误差。GVHMR在野外基准测试中表现出色,不仅在准确性和速度上超越了现有的最先进技术,而且其训练过程和模型权重对公众开放,具有很高的科研和实用价值。
为机器人提供虚拟模拟和评估的先进世界模型。
1X 世界模型是一种机器学习程序,能够模拟世界如何响应机器人的行为。它基于视频生成和自动驾驶汽车世界模型的技术进步,为机器人提供了一个虚拟模拟器,能够预测未来的场景并评估机器人策略。这个模型不仅能够处理复杂的对象交互,如刚体、掉落物体的影响、部分可观察性、可变形物体和铰接物体,还能够在不断变化的环境中进行评估,这对于机器人技术的发展至关重要。
专注于计算机视觉和机器学习领域的研究与创新的博客网站
Shangchen Zhou 是一位在计算机视觉和机器学习领域有着深厚研究背景的博士生,他的工作主要集中在视觉内容增强、编辑和生成AI(2D和3D)上。他的研究成果广泛应用于图像和视频的超分辨率、去模糊、低光照增强等领域,为提升视觉内容的质量和用户体验做出了重要贡献。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
用于训练通用目标分割模型的视频数据集
SA-V Dataset是一个专为训练通用目标分割模型设计的开放世界视频数据集,包含51K个多样化视频和643K个时空分割掩模(masklets)。该数据集用于计算机视觉研究,允许在CC BY 4.0许可下使用。视频内容多样,包括地点、对象和场景等主题,掩模从建筑物等大规模对象到室内装饰等细节不等。
大规模图像编辑数据集
UltraEdit是一个大规模的图像编辑数据集,包含约400万份编辑样本,自动生成,基于指令的图像编辑。它通过利用大型语言模型(LLMs)的创造力和人类评估员的上下文编辑示例,提供了一个系统化的方法来生产大规模和高质量的图像编辑样本。UltraEdit的主要优点包括:1) 它通过利用大型语言模型的创造力和人类评估员的上下文编辑示例,提供了更广泛的编辑指令;2) 其数据源基于真实图像,包括照片和艺术作品,提供了更大的多样性和减少了偏见;3) 它还支持基于区域的编辑,通过高质量、自动生成的区域注释得到增强。
4D重建模型,快速生成动画对象
L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。
一种用于跨领域视频帧中对象匹配的通用模型。
MASA是一个用于视频帧中对象匹配的先进模型,它能够处理复杂场景中的多目标跟踪(MOT)。MASA不依赖于特定领域的标注视频数据集,而是通过Segment Anything Model(SAM)丰富的对象分割,学习实例级别的对应关系。MASA设计了一个通用适配器,可以与基础的分割或检测模型配合使用,实现零样本跟踪能力,即使在复杂领域中也能表现出色。
高效的检索增强生成研究工具包
FlashRAG是一个Python工具包,用于检索增强生成(RAG)研究的复现和开发。它包括32个预处理的基准RAG数据集和12种最先进的RAG算法。FlashRAG提供了一个广泛且可定制的框架,包括检索器、重排器、生成器和压缩器等RAG场景所需的基本组件,允许灵活组装复杂流程。此外,FlashRAG还提供了高效的预处理阶段和优化的执行,支持vLLM、FastChat等工具加速LLM推理和向量索引管理。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
一个公益项目,致力于帮助国内AI开发者快速、稳定的下载模型、数据集。
HuggingFace镜像站是一个非盈利性项目,旨在为国内的AI开发者提供一个快速且稳定的模型和数据集下载平台。通过优化下载过程,减少因网络问题导致的中断,它极大地提高了开发者的工作效率。该镜像站支持多种下载方式,包括网页直接下载、使用官方命令行工具huggingface-cli、本站开发的hfd下载工具以及通过设置环境变量来实现非侵入式下载。
智能视频对象分割技术
SAM是一个先进的视频对象分割模型,它结合了光学流动和RGB信息,能够发现并分割视频中的移动对象。该模型在单对象和多对象基准测试中均取得了显著的性能提升,同时保持了对象的身份一致性。
为开源世界构建高质量视频数据集的计划
Open-Sora-Plan是一个开源项目,旨在为开源社区提供高质量的视频数据集。该项目已经爬取并处理了40258个来自开源网站的高质量视频,涵盖了60%的横屏视频。同时还提供了自动生成的密集字幕,供机器学习等应用使用。该项目免费开源,欢迎大家共同参与和支持。
MNBVC是一个超大规模的中文语料集,对标chatGPT训练的40T数据
MNBVC(Massive Never-ending BT Vast Chinese corpus)是一个旨在为AI提供丰富中文语料的项目。它不仅包括主流文化内容,还涵盖了小众文化和网络用语。数据集包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等多种形式的纯文本中文数据。
LiveFood是一个美食视频高光检测数据集和全局原型编码模型
LiveFood是一个包含超过5100个美食视频的数据集,视频包括食材、烹饪、呈现和食用四个领域,所有视频均由专业工人精细注释,并采用严格的双重检查机制进一步保证注释质量。我们还提出了全局原型编码(GPE)模型来处理这个增量学习问题,与传统技术相比获得了竞争性的性能。
学习网络中的三维动物
3D Fauna是一个通过学习 2D 网络图片来构建三维动物模的方法。它通过引入语义相关的模型集合来解决模型泛化的挑战,并提供了一个新的大规模数据集。在推理过程中,给定一张任意四足动物的图片,我们的模型可以在几秒内通过前馈方式重建出一个有关联的三维网格模型。
机器人图像渲染的新发展
Wild2Avatar是一个用于渲染被遮挡的野外单目视频中的人类外观的神经渲染方法。它可以在真实场景下渲染人类,即使障碍物可能会阻挡相机视野并导致部分遮挡。该方法通过将场景分解为三部分(遮挡物、人类和背景)来实现,并使用特定的目标函数强制分离人类与遮挡物和背景,以确保人类模型的完整性。
端到端MLLM,实现精准引用和定位
ml-ferret是一个端到端的机器学习语言模型(MLLM),能够接受各种形式的引用并响应性地在多模态环境中进行精准定位。它结合了混合区域表示和空间感知的视觉采样器,支持细粒度和开放词汇的引用和定位。此外,ml-ferret还包括GRIT数据集(约110万个样本)和Ferret-Bench评估基准。
借助 AutoML Vision 从图像中发掘有价值的信息、利用预训练的 Vision API 模型,或使用 Vertex AI Vision 创建计算机视觉应用
Vision AI 提供了三种计算机视觉产品,包括 Vertex AI Vision、自定义机器学习模型和 Vision API。您可以使用这些产品从图像中提取有价值的信息,进行图像分类和搜索,并创建各种计算机视觉应用。Vision AI 提供简单易用的界面和功能强大的预训练模型,满足不同用户需求。
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
AI研究论文记忆助手
PaperClip是AI研究者的第二大脑,用于机器学习、计算机视觉和自然语言处理论文的回顾和记忆。它可以帮助您记忆来自机器学习、计算机视觉和自然语言处理论文的详细信息,包括重要发现和论文细节。您可以从任何地方记忆,无论是AI研究论文、机器学习博客文章还是新闻报道。PaperClip的AI在本地运行,不会向任何服务器发送数据。它可以将您的记忆保存在本地,并提供简单的搜索功能,让您随时找回重要发现。PaperClip支持离线搜索,即使没有互联网连接也可以进行搜索。您还可以随时清理您的数据,一键重置保存的信息。PaperClip以Svelte和Hugo Duprez为基础开发。
开源数据标注工具
Label Studio是一款灵活的开源数据标注平台,适用于各种数据类型。它可以帮助用户准备计算机视觉、自然语言处理、语音、声音和视频模型的训练数据。Label Studio提供了多种标注类型,包括图像分类、对象检测、语义分割、音频分类、说话人分割、情感识别、文本分类和命名实体识别等。它支持快速启动和使用,适用于个人和团队使用。
大规模人工智能开放网络
LAION是一个非营利组织,致力于提供机器学习资源给公众使用,包括数据集、工具和模型。我们鼓励开放公共教育,并通过重复使用现有数据集和模型来更环保地使用资源。我们提供多个数据集、模型和项目,以支持广泛的人工智能研究。
© 2024 AIbase 备案号:闽ICP备08105208号-14