需求人群:
"该产品适合开发人员、数据科学家和 AI 研究者,他们需要高效的代码生成和理解能力。Seed-Coder 凭借其强大的模型性能和灵活性,可以帮助他们在项目中快速实现功能,优化开发流程。"
使用场景示例:
利用 Seed-Coder 生成高效的排序算法。
使用 Seed-Coder 进行代码补全以提高开发效率。
在软件工程项目中利用 Seed-Coder 进行代码重构和优化。
产品特色:
以模型为中心进行数据筛选,减少手工工作。
公开分享数据处理和模型训练的透明流程。
在多种编码任务中表现出色,达到业界领先水平。
支持高达 32K 的上下文输入,适应复杂编码场景。
提供多种模型类型以满足不同需求,包括基础、指令和推理。
支持多 GPU 分布式推理,提升服务性能。
使用教程:
访问 Seed-Coder 的 GitHub 页面,下载相应模型。
根据项目需求选择合适的 Seed-Coder 模型(基础、指令或推理)。
使用提供的示例代码配置和初始化模型。
根据具体需求输入相应的编码提示。
运行模型生成代码,测试其输出结果。
浏览量:15
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.25%
德国
3.63%
印度
9.32%
俄罗斯
4.28%
美国
19.34%
Seed-Coder 是一个开源的 8B 代码大型语言模型系列。
Seed-Coder 是字节跳动 Seed 团队推出的开源代码大型语言模型系列,包含基础、指令和推理模型,旨在通过最小的人力投入,自主管理代码训练数据,从而显著提升编程能力。该模型在同类开源模型中表现优越,适合于各种编码任务,定位于推动开源 LLM 生态的发展,适用于研究和工业界。
用于生成和推荐笔记的可检索大型语言模型。
NoteLLM 是一款专注于用户生成内容的可检索大型语言模型,旨在提升推荐系统的性能。通过将主题生成与嵌入生成相结合,NoteLLM 提高了对笔记内容的理解与处理能力。该模型采用了端到端的微调策略,适用于多模态输入,增强了在多样化内容领域的应用潜力。其重要性在于能够有效提升笔记推荐的准确性和用户体验,特别适用于小红书等 UGC 平台。
一个开放源代码的 14B 参数编程模型,具备高效的代码推理能力。
DeepCoder-14B-Preview 是一个基于强化学习的代码推理大型语言模型,能够处理长上下文,具有 60.6% 的通过率,适用于编程任务和自动化代码生成。该模型的优势在于其训练方法的创新,提供了比其他模型更优的性能,且完全开源,支持广泛的社区应用和研究。
两个会话型AI代理在确认彼此为AI后切换到声音级协议进行通信
GibberLink是一个基于ggwave数据传输协议的AI通信模型。它允许两个独立的AI代理在对话中识别彼此为AI后,从英语切换到声音级协议进行通信。这种技术展示了AI在识别和切换通信方式上的灵活性,具有重要的研究和应用价值。项目基于开源协议,适合开发者进行二次开发和集成。目前未明确提及价格,但其开源性质意味着开发者可以免费使用和扩展。
通过强化学习提升大型语言模型在开源软件演变中的推理能力
SWE-RL 是由 Facebook Research 提出的一种基于强化学习的大型语言模型推理技术,旨在利用开源软件演变数据提升模型在软件工程任务中的表现。该技术通过规则驱动的奖励机制,优化模型的推理能力,使其能够更好地理解和生成高质量的代码。SWE-RL 的主要优点在于其创新性的强化学习方法和对开源数据的有效利用,为软件工程领域带来了新的可能性。该技术目前处于研究阶段,尚未明确商业化定价,但其在提升开发效率和代码质量方面具有显著潜力。
一个用于构建Retrieval-Augmented Generation (RAG)应用的开源项目。
bRAG-langchain是一个开源项目,专注于Retrieval-Augmented Generation (RAG)技术的研究与应用。RAG是一种结合了检索和生成的AI技术,通过检索相关文档并生成回答,为用户提供更准确、更丰富的信息。该项目提供了从基础到高级的RAG实现指南,帮助开发者快速上手并构建自己的RAG应用。其主要优点是开源、灵活且易于扩展,适合各种需要自然语言处理和信息检索的应用场景。
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建,具备强大的推理和多领域应用能力。
QwQ-Max-Preview 是 Qwen 系列的最新成果,基于 Qwen2.5-Max 构建。它在数学、编程以及通用任务中展现了更强的能力,同时在与 Agent 相关的工作流中也有不错的表现。作为即将发布的 QwQ-Max 的预览版,这个版本还在持续优化中。其主要优点包括深度推理、数学、编程和 Agent 任务的强大能力。未来计划以 Apache 2.0 许可协议开源发布 QwQ-Max 以及 Qwen2.5-Max,旨在推动跨领域应用的创新。
一个开源的多智能体聊天界面,支持在一个动态对话中管理多个智能体。
Open Multi-Agent Canvas 是一个基于 Next.js、LangGraph 和 CopilotKit 构建的开源多智能体聊天界面。它允许用户在一个动态对话中管理多个智能体,主要用于旅行规划和研究。该产品利用先进的技术,为用户提供高效、灵活的多智能体交互体验。其开源特性使得开发者可以根据需求进行定制和扩展,具有很高的灵活性和可扩展性。
探索大型语言模型作为编程辅导工具的潜力,提出Trace-and-Verify工作流。
Coding-Tutor是一个基于大型语言模型(LLM)的编程辅导工具,旨在通过对话式交互帮助学习者提升编程能力。它通过Trace-and-Verify(Traver)工作流,结合知识追踪和逐轮验证,解决编程辅导中的关键挑战。该工具不仅适用于编程教育,还可扩展到其他任务辅导场景,帮助根据学习者的知识水平调整教学内容。项目开源,支持社区贡献。
一个专注于超大规模系统设计和优化的工具,提供高效解决方案。
The Ultra-Scale Playbook 是一个基于 Hugging Face Spaces 提供的模型工具,专注于超大规模系统的优化和设计。它利用先进的技术框架,帮助开发者和企业高效地构建和管理大规模系统。该工具的主要优点包括高度的可扩展性、优化的性能和易于集成的特性。它适用于需要处理复杂数据和大规模计算任务的场景,如人工智能、机器学习和大数据处理。产品目前以开源的形式提供,适合各种规模的企业和开发者使用。
Goedel-Prover 是一款开源的自动化定理证明模型,专注于数学问题的形式化证明。
Goedel-Prover 是一款专注于自动化定理证明的开源大型语言模型。它通过将自然语言数学问题翻译为形式化语言(如 Lean 4),并生成形式化证明,显著提升了数学问题的自动化证明效率。该模型在 miniF2F 基准测试中达到了 57.6% 的成功率,超越了其他开源模型。其主要优点包括高性能、开源可扩展性以及对数学问题的深度理解能力。Goedel-Prover 旨在推动自动化定理证明技术的发展,并为数学研究和教育提供强大的工具支持。
OmniParser 是一款通用屏幕解析工具,可将 UI 截图转换为结构化格式,提升基于 LLM 的 UI 代理性能。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
Mistral Small 24B 是一款多语言、高性能的指令微调型大型语言模型,适用于多种应用场景。
Mistral Small 24B 是一款由 Mistral AI 团队开发的大型语言模型,拥有 240 亿参数,支持多语言对话和指令处理。该模型通过指令微调,能够生成高质量的文本内容,适用于聊天、写作、编程辅助等多种场景。其主要优点包括强大的语言生成能力、多语言支持以及高效推理能力。该模型适合需要高性能语言处理的个人和企业用户,具有开源许可,支持本地部署和量化优化,适合对数据隐私有要求的场景。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
DeepSeek-R1-Zero 是一款通过大规模强化学习训练的推理模型,无需监督微调即可实现卓越推理能力。
DeepSeek-R1-Zero 是由 DeepSeek 团队开发的推理模型,专注于通过强化学习提升模型的推理能力。该模型在无需监督微调的情况下,展现出强大的推理行为,如自我验证、反思和生成长链推理。其主要优点包括高效推理能力、无需预训练即可使用,以及在数学、代码和推理任务上的卓越表现。该模型基于 DeepSeek-V3 架构开发,支持大规模推理任务,适用于研究和商业应用。
一个实时适应未见任务的自适应大型语言模型框架。
SakanaAI/self-adaptive-llms是一个名为Transformer²的自适应框架,旨在解决传统微调方法计算密集且处理多样化任务能力静态的挑战。该框架能够在推理过程中通过两步机制实时调整大型语言模型(LLMs)以适应未见任务:首先,调度系统识别任务属性;然后,使用强化学习训练的任务特定'专家'向量被动态混合,以获得针对输入提示的目标行为。主要优点包括实时任务适应性、计算效率和灵活性。该项目由SakanaAI团队开发,目前在GitHub上开源,拥有195颗星和12次分叉。
InternLM3-8B-Instruct是一个开源的80亿参数指令模型,用于通用用途和高级推理。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
一个用于检测幻觉的开源评估模型,基于Llama-3架构,拥有700亿参数。
PatronusAI/Llama-3-Patronus-Lynx-70B-Instruct是一个基于Llama-3架构的大型语言模型,旨在检测在RAG设置中的幻觉问题。该模型通过分析给定的文档、问题和答案,评估答案是否忠实于文档内容。其主要优点在于高精度的幻觉检测能力和强大的语言理解能力。该模型由Patronus AI开发,适用于需要高精度信息验证的场景,如金融分析、医学研究等。该模型目前为免费使用,但具体的商业应用可能需要与开发者联系。
一个开源AI模型微调与变现平台,助力AI初创企业、机器学习工程师和研究人员。
Bakery是一个专注于开源AI模型的微调与变现的在线平台,为AI初创企业、机器学习工程师和研究人员提供了一个便捷的工具,使他们能够轻松地对AI模型进行微调,并在市场中进行变现。该平台的主要优点在于其简单易用的界面和强大的功能,用户可以快速创建或上传数据集,微调模型设置,并在市场中进行变现。Bakery的背景信息表明,它旨在推动开源AI技术的发展,并为开发者提供更多的商业机会。虽然具体的定价信息未在页面中明确展示,但其定位是为AI领域的专业人士提供一个高效的工具。
Sonus-1:开启大型语言模型(LLMs)的新时代
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
医疗领域复杂推理的大型语言模型
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
一款高效率的2.4亿参数轻量级语言模型
YuLan-Mini是由中国人民大学AI Box团队开发的一款轻量级语言模型,具有2.4亿参数,尽管仅使用1.08T的预训练数据,但其性能可与使用更多数据训练的行业领先模型相媲美。该模型特别擅长数学和代码领域,为了促进可复现性,团队将开源相关的预训练资源。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
MCP服务器目录,汇集多个MCP服务器资源。
MCP Directory是一个为MCP服务器提供目录服务的网站,它允许用户发现和共享MCP服务器资源。该网站使用TypeScript开发,并且提供了一个友好的用户界面,方便用户快速找到所需的MCP服务器。它的重要性在于为MCP服务器用户提供了一个集中的平台,促进了资源共享和技术交流。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
© 2025 AIbase 备案号:闽ICP备08105208号-14