需求人群:
"该产品适用于需要构建复杂多智能体系统的高级开发者、研究人员以及企业级用户。它适合那些需要通过智能体协作解决复杂问题、自动化任务处理或构建智能系统的人群。其灵活的架构和强大的功能使其成为开发高效、可扩展多智能体应用的理想选择。"
使用场景示例:
管理一个研究团队和一个数学团队,根据任务需求动态分配问题给相应团队
构建自动化客户服务系统,由监督智能体根据问题类型分配给不同专业智能体
开发智能教育应用,通过多级智能体系统为学生提供个性化学习路径
产品特色:
创建中心化的监督智能体以协调多个专业智能体
支持基于工具的智能体交接机制,实现智能体之间的通信
灵活管理对话历史,可选择完整历史或仅保留最后一条消息
支持多级分层结构,允许创建多层智能体层级
提供内存支持,包括短期和长期记忆功能
使用教程:
1. 安装LangGraph Multi-Agent Supervisor库:`pip install langgraph-supervisor`
2. 导入必要的模块,并定义专业智能体及其工具
3. 创建监督智能体,指定其协调的专业智能体和模型
4. 编译并运行监督智能体工作流,传入用户问题或任务
5. 根据需要调整对话历史管理模式或添加内存支持
浏览量:69
最新流量情况
月访问量
5.21m
平均访问时长
00:06:29
每次访问页数
6.12
跳出率
35.96%
流量来源
直接访问
52.10%
自然搜索
32.78%
邮件
0.05%
外链引荐
12.82%
社交媒体
2.16%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.96%
德国
3.65%
印度
9.02%
俄罗斯
4.03%
美国
19.10%
一个用于创建基于LangGraph的分层多智能体系统的Python库。
LangGraph Multi-Agent Supervisor是一个基于LangGraph框架构建的Python库,用于创建分层多智能体系统。它允许开发者通过一个中心化的监督智能体来协调多个专业智能体,实现任务的动态分配和通信管理。该技术的重要性在于其能够高效地组织复杂的多智能体任务,提升系统的灵活性和可扩展性。它适用于需要多智能体协作的场景,如自动化任务处理、复杂问题解决等。该产品定位为高级开发者和企业级应用,目前未明确公开价格,但其开源特性使得用户可以根据自身需求进行定制和扩展。
AI驱动的多智能体数据分析系统
AI-Data-Analysis-MultiAgent是一个高级的AI驱动研究助理系统,利用多个专业智能体协助进行数据分析、可视化和报告生成等任务。该系统采用LangChain、OpenAI的GPT模型和LangGraph处理复杂的研究流程,集成多样化的AI架构以实现最佳性能。该系统的独特之处在于集成了一个专门的Note Taker智能体,通过维护项目的简洁而全面的记录,可以降低计算开销,提高不同分析阶段之间的上下文保持能力,并实现更连贯一致的分析结果。
多智能体系统构建、编排和部署框架
Swarm是由OpenAI Solutions团队管理的实验性框架,旨在构建、编排和部署多智能体系统。它通过定义智能体(Agent)和交接(handoffs)的抽象概念,实现了智能体之间的协调和执行。Swarm框架强调轻量级、高可控性和易于测试,适用于需要大量独立功能和指令的场景,允许开发者拥有完全的透明度和对上下文、步骤和工具调用的细粒度控制。Swarm框架目前处于实验阶段,不推荐在生产环境中使用。
一个开源的多云平台客户端,支持LangGraph代理和前端应用开发。
open-mcp-client 是一个开源项目,旨在为多云平台(MCP)提供客户端支持。它结合了LangGraph代理和基于CopilotKit的前端应用,支持与MCP服务器的交互和工具调用。该项目采用TypeScript、CSS、Python和JavaScript开发,强调开发效率和用户体验。它适用于开发者和企业,用于管理和交互多云资源。开源免费,适合希望在多云环境中快速开发和部署的用户。
开源的 Chrome 扩展程序,用于 AI 驱动的网络自动化,支持多智能体工作流。
Nanobrowser 是一款开源的 Chrome 扩展工具,旨在通过 AI 技术实现高效的网络自动化操作。它支持多智能体系统,用户可以使用自己的 LLM API 密钥运行复杂的网络任务。与 OpenAI Operator 类似,但完全免费且开源,用户可以在本地浏览器中运行任务,确保隐私安全。Nanobrowser 提供了灵活的 LLM 选项,允许用户根据需求选择不同的模型,并为不同的智能体分配不同的模型,从而在性能和成本之间取得平衡。此外,它还具备任务自动化、交互式侧边栏、会话历史等功能,适合需要高效网络操作的用户。
Atom of Thoughts (AoT) 是一种用于提升大语言模型推理性能的框架。
Atom of Thoughts (AoT) 是一种新型推理框架,通过将解决方案表示为原子问题的组合,将推理过程转化为马尔可夫过程。该框架通过分解和收缩机制,显著提升了大语言模型在推理任务上的性能,同时减少了计算资源的浪费。AoT 不仅可以作为独立的推理方法,还可以作为现有测试时扩展方法的插件,灵活结合不同方法的优势。该框架开源且基于 Python 实现,适合研究人员和开发者在自然语言处理和大语言模型领域进行实验和应用。
将任何网页转化为Python编程环境,无需设置即可执行代码。
Cliprun 是一款基于浏览器的 Python 编程工具,通过 Chrome 插件的形式,让用户能够在任何网页上直接运行 Python 代码。它利用 Pyodide 技术,实现了无需本地环境配置的即时代码执行。该工具的主要优点包括无需安装 Python 环境、支持多种常用 Python 库(如 pandas、numpy、matplotlib 等)、提供代码片段保存功能以及支持数据可视化和自动化脚本运行。Cliprun 主要面向开发者、数据分析师和编程学习者,旨在提供一个便捷、高效的在线编程环境,帮助用户快速实现代码测试、数据分析和自动化任务。
一个基于 DuckDB 和 3FS 构建的轻量级数据处理框架
Smallpond 是一个高性能的数据处理框架,专为大规模数据处理而设计。它基于 DuckDB 和 3FS 构建,能够高效处理 PB 级数据集,无需长时间运行的服务。Smallpond 提供了简单易用的 API,支持 Python 3.8 至 3.12,适合数据科学家和工程师快速开发和部署数据处理任务。其开源特性使得开发者可以自由定制和扩展功能。
一个结合了电子表格功能和Python数据分析能力的AI驱动的桌面客户端应用。
Probly是一款创新的桌面客户端应用,它将电子表格的便捷性与Python的强大数据分析能力相结合。通过在浏览器中运行Python代码(使用WebAssembly技术),用户可以在本地进行高效的数据分析,同时利用AI技术获得智能建议和自动化分析。该产品主要面向需要进行复杂数据分析但又希望保持操作便捷性的用户,例如数据分析师、研究人员和企业用户。Probly通过本地运行的架构设计,确保了数据的隐私性和高性能,同时提供了丰富的功能和灵活的扩展性。
一个用于LLM预训练的高效网络爬虫工具,专注于高效爬取高质量网页数据。
Crawl4LLM是一个开源的网络爬虫项目,旨在为大型语言模型(LLM)的预训练提供高效的数据爬取解决方案。它通过智能选择和爬取网页数据,帮助研究人员和开发者获取高质量的训练语料。该工具支持多种文档评分方法,能够根据配置灵活调整爬取策略,以满足不同的预训练需求。项目基于Python开发,具有良好的扩展性和易用性,适合在学术研究和工业应用中使用。
KET-RAG 是一个结合知识图谱的检索增强型生成框架,用于高效文档索引和答案生成。
KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。
基于LLM和LangChain的全栈应用,用于检索股票数据和新闻
该产品是一个全栈应用,通过LLM(大型语言模型)和LangChain技术,结合LangGraph实现股票数据和新闻的检索与分析。它利用ChromaDB作为向量数据库,支持语义搜索和数据可视化,为用户提供股票市场的深入洞察。该产品主要面向投资者、金融分析师和数据科学家,帮助他们快速获取和分析股票相关信息,辅助决策。产品目前开源免费,适合需要高效处理金融数据和新闻的用户。
一个开源的编程助手工具,帮助开发者简化编程任务。
Coding-agent 是一个开源的编程助手工具,旨在通过集成先进的编程辅助技术来简化开发者的任务。它使用了 LangGraph 代理技术,能够生成高质量的代码响应。该工具基于 Next.js 和 CopilotKit 构建,具有高效性和易用性。它适用于开发者在日常编程中快速解决问题、生成代码片段和优化开发流程。作为一个开源项目,它为开发者提供了一个灵活且可定制的编程环境,同时通过社区的力量不断优化和扩展功能。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
利用LlamaIndex和IBM's Docling实现的RAG技术
RAG over excel sheets是一个结合了LlamaIndex和IBM's Docling技术的人工智能项目,专注于在Excel表格上实现检索式问答(RAG)。该项目不仅可以应用于Excel,还可以扩展到PPTs和其他复杂的文档。它通过提供高效的信息检索和处理能力,极大地提高了数据分析和文档管理的效率。
AI工具集,助力效率释放,更高效的办公学习体验。
Winihelper是一款由大学生团队开发的AI工具集,旨在通过先进的multi-agent系统架构和自研技术,优化工作流程,释放个人的全部潜能。产品依托北京绘感科技有限公司的万亿级专业数据库,提供高质量论文和专业百科词条,以专业写手的语气定制算法生成文本,让AI成为超级打工人。
集成长语言模型与Meshtastic通信网络的平台
radio-llm是一个平台,用于将长语言模型(LLMs)与Meshtastic网状通信网络集成。它允许网状网络上的用户与LLM进行交互,以获得简洁、自动化的响应。此外,该平台还允许用户通过LLM执行任务,如呼叫紧急服务、发送消息、检索传感器信息。产品背景信息显示,目前仅支持紧急服务的演示工具,未来将推出更多工具。
一个强大的OCR(光学字符识别)工具
Ollama-OCR是一个使用最新视觉语言模型的OCR工具,通过Ollama提供技术支持,能够从图像中提取文本。它支持多种输出格式,包括Markdown、纯文本、JSON、结构化数据和键值对,并且支持批量处理功能。这个项目以Python包和Streamlit网络应用的形式提供,方便用户在不同场景下使用。
Semantic Kernel的OpenAPI插件,支持.NET和Python。
Semantic Kernel OpenAPI插件是一个为Semantic Kernel设计的插件,它允许开发者轻松地将现有的API集成为插件,增强AI代理的能力,使其在实际应用中更加多样化。这个插件的发布标志着开发者可以利用现有的API功能,将其转化为AI解决方案中的插件,简化流程,提升开发效率。
开源AI代理项目,展示如何构建强大的AI代理并流式传输响应及生成工件。
PostBot 3000是一个开源项目,展示了如何构建一个强大的AI代理,流式传输响应并生成工件。该项目使用LangGraph Python构建AI工作流,并使用FastAPI创建一个健壮的API。它利用了多种技术栈,包括LangGraph、Vercel AI SDK、gpt-4o-mini、FastAPI、Next.js、TailwindCSS等。PostBot 3000的开源特性使得任何想要实现类似解决方案的人都能够更容易地进行开发和部署。
一个专门用于解决数独谜题的RWKV模型。
Sudoku-RWKV是一个基于RWKV模型的数独解题工具,它利用深度学习技术来解决数独问题。这个模型经过专门训练,能够处理大量的数独样本,具有较高的解题准确率。产品背景信息显示,该模型在训练时使用了约2M的数独样本,覆盖了约39.2B的token,参数量大约为12.7M,词汇量为133,架构为8层,每层320维度。该模型的主要优点是高效率和高准确率,能够解决任何可解的数独谜题。
下一代Python笔记本
marimo是一个开源的Python反应式笔记本,它具有可复现性、对git友好、可以作为脚本执行,并且可以作为应用程序分享。它通过自动运行受影响的单元格来响应单元格的更改,消除了管理笔记本状态的繁琐工作。marimo的UI元素如数据框架GUI和图表,使得数据处理变得快速、未来感和直观。marimo笔记本以.py文件存储,可以与git版本控制一起使用,可以作为Python脚本运行,也可以导入符号到其他笔记本或Python文件中,并使用你喜欢的工具进行lint或格式化。所有这些都在现代的 AI 支持的编辑器中进行。
基于GIMM-VFI的ComfyUI帧插值工具
ComfyUI-GIMM-VFI是一个基于GIMM-VFI算法的帧插值工具,使用户能够在图像和视频处理中实现高质量的帧插值效果。该技术通过在连续帧之间插入新的帧来提高视频的帧率,从而使得动作看起来更加流畅。这对于视频游戏、电影后期制作和其他需要高帧率视频的应用场景尤为重要。产品背景信息显示,它是基于Python开发的,并且依赖于CuPy库,特别适用于需要进行高性能计算的场景。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
多智能体系统,解决复杂任务
Magentic-One是由微软研究团队开发的一个通用多智能体系统,旨在解决开放性网络和文件任务。该系统代表了人工智能领域向代理系统发展的重要一步,这些系统能够完成人们在工作和生活中遇到的复杂多步骤任务。Magentic-One采用了一个名为Orchestrator的主智能体,负责规划、跟踪进度和在需要时重新规划,同时指导其他专门智能体执行任务,如操作网络浏览器、导航本地文件或编写和执行Python代码。Magentic-One在多个挑战性的代理基准测试中表现出与最新技术相媲美的性能,且无需对其核心能力或架构进行修改。
利用Claude 3.5 Sonnet Vision API进行图像中物体检测和可视化的强大Python工具
Claude Vision Object Detection是一个基于Python的工具,它利用Claude 3.5 Sonnet Vision API来检测图像中的物体并进行可视化。该工具能够自动在检测到的物体周围绘制边界框,对它们进行标记,并显示置信度分数。它支持处理单张图片或整个目录中的图片,并且具有高精度的置信度分数,为每个检测到的物体使用鲜艳且不同的颜色。此外,它还能保存带有检测结果的注释图片。
AI驱动的数据可视化工具
Data Formulator 是微软研究团队开发的一款AI驱动的数据可视化工具,它通过结合用户界面交互和自然语言输入,帮助用户快速创建丰富的数据可视化图表。该工具可以自动处理数据转换,使用户能够专注于图表设计。Data Formulator 支持通过Python安装并本地运行,也可以在GitHub Codespaces中快速启动。它代表了数据分析和可视化领域的技术进步,通过AI技术提高了数据可视化的效率和易用性。
构建多智能体系统的JavaScript框架
KaibanJS是一个专为JavaScript开发者设计的框架,用于构建和协调AI智能体。它允许开发者以类似微服务的方式处理AI任务,每个智能体负责不同的任务,如数据处理、处理和输出生成,全部自动协同工作。KaibanJS强调易用性和原生JavaScript支持,使得JavaScript开发者也能享受到构建复杂AI系统的能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14