需求人群:
"目标受众为开发者和技术爱好者,特别是对长语言模型和Meshtastic网络通信感兴趣的群体。该产品适合他们,因为它提供了一个集成平台,可以探索和实现LLMs在实际通信网络中的应用,推动自动化和智能化通信的发展。"
使用场景示例:
用户可以通过该平台在紧急情况下自动呼叫紧急服务。
用户可以发送消息并接收来自LLM的自动响应。
用户可以从传感器检索信息,并由LLM处理后返回。
产品特色:
双向通信:Meshtastic与LLM之间的双向通信。
广播或定向响应:支持一般广播或针对特定目标的响应。
自动消息分块:对于超过200字符的长响应,自动进行消息分块。
维护消息历史:保持消息历史记录,以实现上下文感知的交互。
节点特定信息:可以包含节点特定信息(例如电池水平、位置)在响应中。
工具使用:LLM可以根据提示执行任务。
使用教程:
1. 连接Meshtastic设备,通过USB或配置TCP访问。
2. 克隆仓库到本地,并进入项目目录。
3. 安装依赖项。
4. 运行主脚本。
5. 使用普通消息或'/tool your_message'与LLM进行交互。
6. 根据需要修改LLM模型和配置。
7. 如果需要添加自定义工具,定义工具、注册工具并描述工具。
浏览量:39
最新流量情况
月访问量
5.13m
平均访问时长
00:06:32
每次访问页数
6.11
跳出率
36.07%
流量来源
直接访问
54.23%
自然搜索
31.90%
邮件
0.04%
外链引荐
11.74%
社交媒体
1.91%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.57%
德国
3.83%
印度
10.07%
俄罗斯
4.92%
美国
18.64%
集成长语言模型与Meshtastic通信网络的平台
radio-llm是一个平台,用于将长语言模型(LLMs)与Meshtastic网状通信网络集成。它允许网状网络上的用户与LLM进行交互,以获得简洁、自动化的响应。此外,该平台还允许用户通过LLM执行任务,如呼叫紧急服务、发送消息、检索传感器信息。产品背景信息显示,目前仅支持紧急服务的演示工具,未来将推出更多工具。
使用Ollama和Gradio UI的GraphRAG本地模型
GraphRAG-Ollama-UI是一个基于微软GraphRAG的本地模型适配版本,支持使用Ollama进行本地模型支持。它通过Gradio UI提供了一个交互式用户界面,使得用户可以更方便地管理数据、运行查询和可视化结果。该模型的主要优点包括本地模型支持、成本效益高、交互式用户界面、实时图可视化、文件管理、设置管理、输出探索和日志记录。
使用ollama Python客户端与ComfyUI工作流集成的大型语言模型(LLM)
ComfyUI Ollama是为ComfyUI工作流设计的自定义节点,它使用ollama Python客户端,允许用户轻松地将大型语言模型(LLM)集成到他们的工作流程中,或者仅仅是进行GPT实验。这个插件的主要优点在于它提供了与Ollama服务器交互的能力,使得用户可以执行图像查询、通过给定的提示查询LLM,以及使用精细调整参数进行LLM查询,同时保持生成链的上下文。
macOS平台的Ollama模型聊天应用
Chital是一个为macOS平台设计的应用程序,它允许用户与Ollama模型进行聊天。这个应用具有低内存占用和快速启动的特点,支持多聊天线程,能够在不同的模型间切换,并支持Markdown格式。此外,它还能自动为聊天线程生成标题摘要。Chital的开发主要是为了满足开发者个人的使用需求,但也鼓励社区成员通过fork代码库来添加新功能。
为初学者设计的AI Python编程课程
AI Python for Beginners 是由 DeepLearning.AI 提供的在线课程,由全球知名的 AI 领导者 Andrew Ng 亲自授课。课程旨在帮助初学者学习 Python 编程基础,并教授如何将 AI 工具集成到数据操作、分析和可视化中。通过这个课程,学习者可以发现 Python 在商业、市场营销和新闻等领域的应用,解决实际问题并提高效率。课程通过 AI 助手辅助学习,提供即时反馈,解答问题,快速识别并解决编程中的错误,确保学习者在编码过程中得到有效支持。
Ollama能在Windows本地运行大型AI模型
Ollama是一个开源项目,能够在Windows本地运行各类大型AI模型,支持GPU加速,内置OpenAI模型兼容层,提供永久在线的API。用户可以无缝访问Ollama的完整模型库,进行图片和语音交互。Ollama免配置就能获得强大的AI能力,帮助开发者和创作者在Windows上构建AI应用。
通过本地Ollama LLM与你的Obsidian笔记聊天
Obsidian Ollama Chat是一个插件,允许用户通过本地运行的Ollama LLM模型与自己的Obsidian笔记进行交互和查询。它提供了一种新颖的笔记管理和信息检索方式,使得用户可以更加直观和便捷地获取所需信息。该插件的开发背景是索引和查询笔记内容的需要,它通过本地模型运行,保护用户隐私,并且避免了对外部服务的依赖。
使用Groq或OpenAI或Ollama创建o1类推理链
o1是一个实验性的项目,旨在通过使用大型语言模型(LLM)来创建推理链,帮助模型解决通常难以处理的逻辑问题。它支持Groq、OpenAI和Ollama后端,通过动态推理链让模型能够“思考”并解决问题。o1展示了仅通过提示就能显著提高现有模型的逻辑推理能力,而无需额外训练。
Python机器学习库
scikit-learn是一个简单高效的机器学习库,提供了丰富的机器学习算法和工具,可用于分类、回归、聚类、降维等任务。它基于NumPy、SciPy和matplotlib构建,具有易用性、性能优越以及可重复使用的特点。scikit-learn开源可商用,采用BSD许可证。
一个强大的OCR(光学字符识别)工具
Ollama-OCR是一个使用最新视觉语言模型的OCR工具,通过Ollama提供技术支持,能够从图像中提取文本。它支持多种输出格式,包括Markdown、纯文本、JSON、结构化数据和键值对,并且支持批量处理功能。这个项目以Python包和Streamlit网络应用的形式提供,方便用户在不同场景下使用。
Python中创建精美表格的库
Great Tables是一个Python库,用于创建美观且功能丰富的表格。它支持Pandas或Polars DataFrame作为数据源,提供了多种格式化选项和自定义功能,非常适合数据分析和报告生成。该库由Rich Iannone和Michael Chow主要维护,采用MIT许可证,强调简洁而强大的设计哲学。
基于 Python 和 FastAPI 的非官方 Suno API。
SunoAPI 是一个基于 Python 和 FastAPI 的非官方 Suno API。它支持生成歌曲、歌词等功能,并带有内置的令牌维护和保持活跃功能,让您无需担心令牌过期。SunoAPI 采用全异步设计,运行速度快,适合后续扩展。用户可以轻松使用 API 生成各种音乐内容。
低代码的python机器学习库
PyCaret是一个开源的、低代码的Python机器学习库,它可以自动化机器学习工作流程。PyCaret 可以让你花费更少的时间编写代码,更多的时间用于分析。PyCaret模块化设计,每个模块封装了特定的机器学习任务。PyCaret中一致的函数集可以在工作流中执行任务。PyCaret中有许多数据预处理功能可供选择,从缩放到特征工程。有大量有趣的教程可以帮助你学习PyCaret,你可以从我们的官方教程开始。PyCaret使机器学习变得简单有趣。
Semantic Kernel的OpenAPI插件,支持.NET和Python。
Semantic Kernel OpenAPI插件是一个为Semantic Kernel设计的插件,它允许开发者轻松地将现有的API集成为插件,增强AI代理的能力,使其在实际应用中更加多样化。这个插件的发布标志着开发者可以利用现有的API功能,将其转化为AI解决方案中的插件,简化流程,提升开发效率。
Mac上的简单助手,使用llama-cpp-python。
LLaMA Assistant for Mac是一个基于llama-cpp-python库开发的桌面客户端,旨在通过预定义需求为用户提供帮助。它采用了大量来自其他项目的代码,但用llama-cpp-python替代了ollama部分,以实现更符合Python编程风格的解决方案。
下一代Python笔记本
marimo是一个开源的Python反应式笔记本,它具有可复现性、对git友好、可以作为脚本执行,并且可以作为应用程序分享。它通过自动运行受影响的单元格来响应单元格的更改,消除了管理笔记本状态的繁琐工作。marimo的UI元素如数据框架GUI和图表,使得数据处理变得快速、未来感和直观。marimo笔记本以.py文件存储,可以与git版本控制一起使用,可以作为Python脚本运行,也可以导入符号到其他笔记本或Python文件中,并使用你喜欢的工具进行lint或格式化。所有这些都在现代的 AI 支持的编辑器中进行。
一个简单而强大的Python库,用于使用大型语言模型(LLMs)。
promptic是一个轻量级、基于装饰器的Python库,它通过litellm简化了与大型语言模型(LLMs)交互的过程。使用promptic,你可以轻松创建提示,处理输入参数,并从LLMs接收结构化输出,仅需几行代码。
一个用于Lumina模型的Python包装器
ComfyUI-LuminaWrapper是一个开源的Python包装器,用于简化Lumina模型的加载和使用。它支持自定义节点和工作流,使得开发者能够更便捷地集成Lumina模型到自己的项目中。该插件主要面向希望在Python环境中使用Lumina模型进行深度学习或机器学习的开发者。
Langroid是一个基于Python的轻量级LLM框架
Langroid是一个轻量级、可扩展和原则性的Python框架,可以轻松地构建基于LLM的应用程序。您可以设置代理,为它们配备可选组件(LLM、向量存储和方法),分配它们任务,并让他们通过交换消息协作解决问题。这个多代理范例的灵感来自Actor框架(但您不需要了解任何关于这个的知识!)。Langroid提供了一个全新的LLM应用程序开发方式,在简化开发人员体验方面进行了深思熟虑;它不使用Langchain。我们欢迎贡献--请参阅贡献文档以获取贡献想法。
本地大语言模型
Ollama是一款本地大语言模型工具,让用户能够快速运行Llama 2、Code Llama和其他模型。用户可以自定义和创建他们自己的模型。Ollama目前支持macOS和Linux,Windows版本即将推出。该产品定位于为用户提供本地化的大语言模型运行环境,以满足用户个性化的需求。
Python 网络爬虫和浏览器自动化库
Crawlee 是一个用于构建可靠爬虫的 Python 网络爬虫和浏览器自动化库,提取数据用于AI、LLMs、RAG或GPTs。它提供了统一的接口来处理 HTTP 和无头浏览器爬取任务,支持自动并行爬取,基于系统资源进行调整。Crawlee 用 Python 编写,包含类型提示,增强了开发体验并减少了错误。它具备自动重试、集成代理轮换和会话管理、可配置的请求路由、持久化 URL 队列、可插拔的存储选项等功能。相较于 Scrapy,Crawlee 提供了对无头浏览器爬取的原生支持,拥有简洁优雅的接口,并且完全基于标准的异步 IO。
自动提取和总结 arXiv 研究论文的 Python 工具。
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。它帮助研究人员、学生和爱好者快速提取关键信息,从而节省阅读冗长文献的时间。该工具不仅适合个体用户,还可以自动化日常的文献检索,提升研究效率。产品免费提供,易于安装和配置。
Vanna: 用AI快速生成SQL的Python包
Vanna.AI是一个基于Python的AI SQL助手,能够帮助您快速生成SQL查询语句。它支持Snowflake、BigQuery、Athena、Postgres等多种数据库,可以帮助您简化SQL的创建流程。您只需提供数据库的架构信息,Vanna会根据您的需求自动生成相应的SQL代码。Vanna具有高精度和安全性,您的数据库内容永远不会发送到Vanna的服务器。
Python自然语言处理工具包
NLTK是一个领先的Python平台,用于处理人类语言数据。它提供了易于使用的接口,用于访问50多个语料库和词汇资源,如WordNet,并提供了一套文本处理库,用于分类、标记、解析和语义推理。它还提供了工业级NLP库的封装,并有一个活跃的讨论论坛。NLTK适用于语言学家、工程师、学生、教育者、研究人员和行业用户。NLTK可以免费使用,并且是一个开源的社区驱动项目。
轻量级Python库,用于使用大型语言模型进行网站抓取。
Parsera是一个轻量级的Python库,专门设计用于与大型语言模型(LLMs)结合,以简化网站数据抓取的过程。它通过使用最少的令牌来提高速度并降低成本,使得数据抓取变得更加高效和经济。Parsera支持多种聊天模型,并且可以自定义使用不同的模型,如OpenAI或Azure。
Dria-Agent-α是基于Python的大型语言模型工具交互框架。
Dria-Agent-α是Hugging Face推出的大型语言模型(LLM)工具交互框架。它通过Python代码来调用工具,与传统的JSON模式相比,能更充分地发挥LLM的推理能力,使模型能够以更接近人类自然语言的方式进行复杂问题的解决。该框架利用Python的流行性和接近伪代码的语法,使LLM在代理场景中表现更佳。Dria-Agent-α的开发使用了合成数据生成工具Dria,通过多阶段管道生成逼真的场景,训练模型进行复杂问题解决。目前已有Dria-Agent-α-3B和Dria-Agent-α-7B两个模型在Hugging Face上发布。
Streamlit是一个开源Python库,用于快速构建数据应用和机器学习产品原型。
Streamlit是一个开源Python库,让数据科学家和机器学习工程师可以快速地在Web浏览器中创建Beautiful,自定义的机器学习应用程序和数据应用程序。无需学习前端Web开发,Streamlit应用可以在几分钟内从简单的脚本构建。Streamlit提供了简单的API来创建各种交互式小部件,如文本、图像、表格、图表、视频等,从而使数据探索和展示变得轻松。它具有内置支持的数据框架,如Pandas、Numpy、Matplotlib等。它兼容大多数Python机器学习库,如Scikit-learn、TensorFlow等。
多人协作的数据平台,支持SQL和Python的交互式笔记本。
Briefer是一个开源的数据平台,它允许用户运行SQL和Python代码,并将笔记本转化为仪表板和数据应用。它支持连接多种数据源,如Postgres、BigQuery、Redshift等,并且可以利用查询结果直接在Python代码块中使用。此外,它还提供了预安装的库和内置AI助手来帮助用户更快速地编写代码。Briefer的仪表板和数据应用功能,使得用户可以创建交互式的页面,用于数据探索和决策支持。
© 2025 AIbase 备案号:闽ICP备08105208号-14