需求人群:
"目标受众为图像合成、虚拟现实和增强现实领域的专业人士和研究人员。DiPIR技术能够帮助他们更高效地创建逼真的图像和视频,提高工作效率和产品质量。"
使用场景示例:
在Waymo户外驾驶场景中插入虚拟汽车并优化照明效果
使用室内HDRI全景图作为背景,插入虚拟装饰品并进行材质和色调映射优化
在动态场景中动画化虚拟物体或移动物体位置,以创建更加逼真的视觉效果
产品特色:
从单张图片中恢复场景照明
实现虚拟物体在室内外场景中的逼真合成
自动材质和色调映射优化
支持单帧或视频的虚拟物体合成
通过个性化扩散模型引导物理基础逆渲染过程
使用不同背景图像进行评估,如Waymo户外驾驶场景和室内HDRI全景图
通过扩散引导的照明优化过程,提高虚拟物体插入的准确性
使用教程:
1. 准备一张目标背景图像,可以是室内外场景。
2. 选择或创建一个虚拟物体模型,并将其放置在场景中。
3. 使用DiPIR模型从背景图像中恢复场景照明。
4. 根据恢复的照明效果,调整虚拟物体的材质和色调映射参数。
5. 利用DiPIR的扩散引导逆渲染技术,优化虚拟物体在场景中的合成效果。
6. 评估合成结果,并根据需要进行进一步的调整和优化。
7. 完成合成后,导出最终的图像或视频。
浏览量:60
最新流量情况
月访问量
189.81k
平均访问时长
00:00:51
每次访问页数
1.87
跳出率
63.12%
流量来源
直接访问
32.96%
自然搜索
47.46%
邮件
0.08%
外链引荐
14.98%
社交媒体
4.10%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.42%
德国
5.05%
印度
6.20%
韩国
5.01%
美国
29.18%
利用扩散引导逆渲染技术实现逼真物体插入
DiPIR是多伦多AI实验室与NVIDIA Research共同研发的一种基于物理的方法,它通过从单张图片中恢复场景照明,使得虚拟物体能够逼真地插入到室内外场景中。该技术不仅能够优化材质和色调映射,还能自动调整以适应不同的环境,提高图像的真实感。
一种用于逆渲染的先进学习扩散先验方法,能够从任意图像中恢复物体材质并实现单视图图像重照明。
IntrinsicAnything 是一种先进的图像逆渲染技术,它通过学习扩散模型来优化材质恢复过程,解决了在未知静态光照条件下捕获的图像中物体材质恢复的问题。该技术通过生成模型学习材质先验,将渲染方程分解为漫反射和镜面反射项,利用现有丰富的3D物体数据进行训练,有效地解决了逆渲染过程中的歧义问题。此外,该技术还开发了一种从粗到细的训练策略,利用估计的材质引导扩散模型产生多视图一致性约束,从而获得更稳定和准确的结果。
在线图像集合的神经渲染
NeROIC是一种从在线图像集合中获取物体表示的新方法,可以捕捉具有不同相机、光照和背景的照片中任意物体的高质量几何和材质属性。它可以用于新视角合成、重新照明和和谐背景合成等物体中心渲染应用。通过扩展神经辐射场的多阶段方法,我们首先推断表面几何并改进粗略估计的初始相机参数,同时利用粗略的前景物体掩码来提高训练效率和几何质量。我们还引入了一种稳健的法线估计技术,可以消除几何噪声的影响,同时保留关键细节。最后,我们提取表面材质属性和环境光照,用球谐函数表示,并处理瞬态元素,如锐利阴影。这些组件的结合形成了一个高度模块化和高效的物体获取框架。广泛的评估和比较证明了我们的方法在捕捉用于渲染应用的高质量几何和外观属性方面的优势。
高保真几何渲染
这款产品是一种3D GAN技术,通过学习基于神经体积渲染的方法,能够以前所未有的细节解析细粒度的3D几何。产品采用学习型采样器,加速3D GAN训练,使用更少的深度采样,实现在训练和推断过程中直接渲染完整分辨率图像的每个像素,同时学习高质量的表面几何,合成高分辨率3D几何和严格视角一致的图像。产品在FFHQ和AFHQ上展示了最先进的3D几何质量,为3D GAN中的无监督学习建立了新的标准。
全栈式虚拟人多场景应用服务
讯飞虚拟人利用最新的AI虚拟形象技术,结合语音识别、语义理解、语音合成、NLP、星火大模型等AI核心技术,提供虚拟人形象资产构建、AI驱动、多模态交互的多场景虚拟人产品服务。一站式虚拟人音视频内容生产,AIGC助力创作灵活高效;在虚拟'AI演播室'中输入文本或录音,一键完成音、视频作品的输出,3分钟内渲染出稿。
高保真情感3D虚拟人头合成
EmoTalk3D是一个专注于3D虚拟人头合成的研究项目,它通过收集多视角视频、情感注释和每帧3D几何数据来解决传统3D人头合成中存在的视角一致性和情感表达不足的问题。该项目提出了一种新颖的方法,通过训练EmoTalk3D数据集,实现了情感可控的3D人头合成,具有增强的唇部同步和渲染质量。EmoTalk3D模型能够生成具有广泛视角和高渲染质量的3D动画,同时捕捉到动态面部细节,如皱纹和微妙表情。
基于AI生成图像的3D渲染模型
Toy Box Flux是一个基于AI生成图像训练的3D渲染模型,它结合了现有的3D LoRA模型和Coloring Book Flux LoRA的权重,形成了独特的风格。该模型特别适合生成具有特定风格的玩具设计图像。它在物体和人物主体上表现最佳,动物的表现则因训练图像中的数据不足而不稳定。此外,该模型还能提高室内3D渲染的真实感。计划在v2版本中通过混合更多生成的输出和预先存在的输出来加强这种风格的一致性。
房地产虚拟家居布置,照片编辑和3D渲染服务。
Styldod是一家提供房地产虚拟家居布置、照片编辑、楼层平面图和3D渲染等服务的公司。我们可以帮助您将空置的房间转化为时尚的空间,帮助买家爱上您的房源。我们还提供照片编辑服务,包括移除过时或杂乱的家具,将白天的照片变成令人惊艳的黄昏图片,增强图片的亮度和清晰度,以及删除照片中的反射等。此外,我们还提供楼层平面图和3D渲染服务,帮助您展示未建成的房地产项目。我们的定价合理,并提供免费试用和24小时交付。Styldod已经得到了1万名房地产经纪人和摄影师的信任。
使用Gemini API进行图像物体检测的Streamlit应用
bonding_w_geimini是一个基于Streamlit框架开发的图像处理应用,它允许用户上传图片,通过Gemini API进行物体检测,并在图片上直接绘制出物体的边界框。这个应用利用了机器学习模型来识别和定位图片中的物体,对于图像分析、数据标注和自动化图像处理等领域具有重要意义。
无需对象模板的人体与物体交互跟踪技术
InterTrack 是一种先进的跟踪技术,能够在单目RGB视频中跟踪人体与物体的交互,即使在遮挡和动态运动下也能保持跟踪的连贯性。该技术无需使用任何对象模板,仅通过合成数据训练即可在真实世界视频中实现良好的泛化。InterTrack 通过分解4D跟踪问题为每帧的姿态跟踪和规范形状优化,显著提高了跟踪的准确性和效率。
虚拟试穿、物体移动
AnyDoor 是一种基于扩散的图像生成器,可以在用户指定的位置将目标对象以和谐的方式传送到新场景中。我们的模型只需要训练一次,就可以轻松推广到不同的对象和场景组合中,无需为每个对象调整参数。为了充分描述某个特定对象,我们除了使用常用的身份特征外,还补充了细节特征,这些特征经过精心设计,既能保持纹理细节,又能允许多样的局部变化(如光照、方向、姿势等),从而使对象与不同的环境更好地融合。我们还提出从视频数据集中借用知识的方法,在视频数据集中可以观察到同一对象的各种形态(沿时间轴),从而增强模型的泛化能力和鲁棒性。大量实验证明了我们方法的优越性,以及它在虚拟试穿和物体移动等实际应用中的巨大潜力。
高效渲染大规模场景的实时视图合成技术
Level of Gaussians (LoG) 是一种用于高效渲染三维场景的新技术,它通过树状结构存储高斯基元,并通过渐进式训练策略从图像中端到端重建,有效克服局部最小值,实现实时渲染数百万平方千米的区域,是渲染大规模场景的重要进步。
高效图像合成的新框架
Hyper-SD是一个创新的图像合成框架,它通过轨迹分割一致性模型和低步数推理的优势,实现了高效的图像合成。该框架结合了ODE轨迹保留和重构的优势,同时通过人类反馈学习进一步提升了性能,并通过分数蒸馏技术增强了低步数生成能力。Hyper-SD在1到8步推理步骤中实现了SOTA性能,特别适合需要快速且高质量图像生成的应用场景。
最新的图像上色算法
DDColor 是最新的图像上色算法,输入一张黑白图像,返回上色处理后的彩色图像,并能够实现自然生动的上色效果。 该模型为黑白图像上色模型,输入一张黑白图像,实现端到端的全图上色,返回上色处理后的彩色图像。 模型期望使用方式和适用范围: 该模型适用于多种格式的图像输入,给定黑白图像,生成上色后的彩色图像;给定彩色图像,将自动提取灰度通道作为输入,生成重上色的图像。
虚拟试穿产品图像修复模型
Diffuse to Choose 是一种基于扩散的图像修复模型,主要用于虚拟试穿场景。它能够在修复图像时保留参考物品的细节,并且能够进行准确的语义操作。通过将参考图像的细节特征直接融入主要扩散模型的潜在特征图中,并结合感知损失来进一步保留参考物品的细节,该模型在快速推理和高保真细节方面取得了良好的平衡。
AI 图像擦除器,轻松删除照片中不需要的人、物体、文字和水印。
AI 图像擦除器是一款基于人工智能技术的工具,能够快速、简单地从照片中删除不需要的内容,提高照片的整体质量。该工具操作简便,免费使用,适用于个人和专业用户。
免费的惊艳虚拟换装工具
Kolors虚拟试妆AI是一种创新的人工智能技术,它允许用户在不实际穿着的情况下虚拟试穿衣服。用户可以通过上传个人照片和所需衣物的图像,AI会生成用户穿着所选服装的真实可视化效果。这项技术不仅为用户带来了便利,使他们能够从舒适的家中尝试不同的风格,而且还通过提供个性化的时尚体验来提高购物体验的准确性和效率。对于服装零售商来说,Kolors虚拟试穿AI提供了对用户试穿数据的深入分析,使他们能够了解市场趋势和消费者偏好,从而优化产品线和营销策略。
无需更换,即可虚拟试穿各种服装。
Kolors 虚拟试穿 AI 是一款利用人工智能技术,通过用户上传的照片来虚拟试穿服装的在线平台。它通过先进的计算机视觉算法和生成对抗网络(GANs)技术,为用户提供逼真的服装试穿效果。该产品不仅改变了传统的试衣体验,还为时尚博主、服装零售商、个人造型师等提供了创新的内容创作和展示方式。它的优势在于能够提供即时的试穿效果,多样化的服装选择,以及真实感的渲染效果,同时保护用户隐私,支持个性化的服装试穿体验。
高分辨率图像合成
luosiallen/latent-consistency-model 是一个用于合成高分辨率图像的模型。它使用少量的推理步骤来生成具有良好一致性的图像。该模型支持自定义的输入提示和参数调整,可生成逼真的艺术品、人像等图像。
基于LDM的服装驱动图像合成AI
MagicClothing是一种基于潜在扩散模型(LDM)的新型网络架构,专门用于服装驱动的图像合成任务。它能够根据文本提示生成穿着特定服装的定制化角色图像,同时确保服装细节的保留和对文本提示的忠实呈现。该系统通过服装特征提取器和自注意力融合技术,实现了高度的图像可控性,并且可以与ControlNet和IP-Adapter等其他技术结合使用,以提升角色的多样性和可控性。此外,还开发了匹配点LPIPS(MP-LPIPS)评估指标,用于评价生成图像与原始服装的一致性。
超高清图像合成技术的新高峰
UltraPixel是一种先进的超高清图像合成技术,旨在推动图像分辨率达到新的高度。这项技术由香港科技大学(广州)、华为诺亚方舟实验室、马克斯·普朗克信息学研究所等机构共同研发。它在图像合成、文本到图像的转换、个性化定制等方面具有显著优势,能够生成高达4096x4096分辨率的图像,满足专业图像处理和视觉艺术的需求。
使用单眼视频记录产生实时4D头像合成的神经网络方法
BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。
利用Claude 3.5 Sonnet Vision API进行图像中物体检测和可视化的强大Python工具
Claude Vision Object Detection是一个基于Python的工具,它利用Claude 3.5 Sonnet Vision API来检测图像中的物体并进行可视化。该工具能够自动在检测到的物体周围绘制边界框,对它们进行标记,并显示置信度分数。它支持处理单张图片或整个目录中的图片,并且具有高精度的置信度分数,为每个检测到的物体使用鲜艳且不同的颜色。此外,它还能保存带有检测结果的注释图片。
秒速移除不需要的物体
神奇橡皮擦能够帮助用户快速移除照片中不需要的物体。用户只需上传照片,标记需要移除的部分,然后下载修改后的照片。完全免费使用,无需注册。适用于房地产摄影、时尚摄影、社交媒体等领域。支持批量编辑,最多可同时编辑50张图片。
多功能大规模扩散模型,支持双向图像合成与理解。
OneDiffusion是一个多功能、大规模的扩散模型,它能够无缝支持双向图像合成和理解,覆盖多种任务。该模型预计将在12月初发布代码和检查点。OneDiffusion的重要性在于其能够处理图像合成和理解任务,这在人工智能领域是一个重要的进步,尤其是在图像生成和识别方面。产品背景信息显示,这是一个由多位研究人员共同开发的项目,其研究成果已在arXiv上发表。
高效渲染被遮挡的人体
OccFusion是一种创新的人体渲染技术,利用3D高斯散射和预训练的2D扩散模型,即使在人体部分被遮挡的情况下也能高效且高保真地渲染出完整的人体图像。这项技术通过三个阶段的流程:初始化、优化和细化,显著提高了在复杂环境下人体渲染的准确性和质量。
基于条件扩散模型的人类-物体交互合成技术
Controllable Human-Object Interaction Synthesis (CHOIS) 是一种先进的技术,它能够根据语言描述、初始物体和人类状态以及稀疏物体路径点来同时生成物体运动和人类运动。这项技术对于模拟真实的人类行为至关重要,尤其在需要精确手-物体接触和由地面支撑的适当接触的场景中。CHOIS通过引入物体几何损失作为额外的监督信息,以及在训练扩散模型的采样过程中设计指导项来强制执行接触约束,从而提高了生成物体运动与输入物体路径点之间的匹配度,并确保了交互的真实性。
© 2025 AIbase 备案号:闽ICP备08105208号-14