浏览量:441
高质量的AI客服数据集,训练智能客服
Botdocs是一系列高质量的数据集,用于训练人工智能处理常见的客服互动。它可用于训练大型语言模型、意图分类器和自然语言理解引擎,以帮助企业自动化常见的客服互动,并提供对客户意图的理解和提供卓越的客户体验。Botdocs以CSV、JSONL和Dialogflow(ES)格式提供,以满足AI开发人员和系统对大型语言模型、意图分类器和自然语言理解引擎的不同需求。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
利用大型语言模型(LLM)进行创新研究的智能代理
CoI-Agent是一个基于大型语言模型(LLM)的智能代理,旨在通过链式思维(Chain of Ideas)的方式革新研究领域的新想法开发。该模型通过整合和分析大量数据,为研究人员提供创新的思路和研究方向。它的重要性在于能够加速科研进程,提高研究效率,帮助研究人员在复杂的数据中发现新的模式和联系。CoI-Agent由DAMO-NLP-SG团队开发,是一个开源项目,可以免费使用。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
为复杂企业打造的AI工具
LLMWare.ai是一个为金融、法律、合规和监管密集型行业设计的AI工具,专注于私有云中的小型专业化语言模型和专为SLMs设计的AI框架。它提供了一个集成的、高质量的、组织良好的框架,用于开发AI代理工作流、检索增强生成(RAG)和其他用例的LLM应用程序,包括许多核心对象,以便开发者可以立即开始。
高性能浏览器内语言模型推理引擎
WebLLM是一个高性能的浏览器内语言模型推理引擎,利用WebGPU进行硬件加速,使得强大的语言模型操作可以直接在网页浏览器内执行,无需服务器端处理。这个项目旨在将大型语言模型(LLM)直接集成到客户端,从而实现成本降低、个性化增强和隐私保护。它支持多种模型,并与OpenAI API兼容,易于集成到项目中,支持实时交互和流式处理,是构建个性化AI助手的理想选择。
高效准确的AI语言模型
Llama-3.1-Nemotron-51B是由NVIDIA基于Meta的Llama-3.1-70B开发的新型语言模型,通过神经架构搜索(NAS)技术优化,实现了高准确率和高效率。该模型能够在单个NVIDIA H100 GPU上运行,显著降低了内存占用,减少了内存带宽和计算量,同时保持了优秀的准确性。它代表了AI语言模型在准确性和效率之间取得的新平衡,为开发者和企业提供了成本可控的高性能AI解决方案。
通过生成式AI激活人类潜能
Stability AI是一个专注于生成式人工智能技术的公司,提供多种AI模型,包括文本到图像、视频、音频、3D和语言模型。这些模型能够处理复杂提示,生成逼真的图像和视频,以及高质量的音乐和音效。公司提供灵活的许可选项,包括自托管许可和平台API,以满足不同用户的需求。Stability AI致力于通过开放模型,为全球每个人提供高质量的AI服务。
生成开放世界视频游戏的扩散变换模型
GameGen-O 是首个为生成开放世界视频游戏而定制的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样化事件,实现了高质量、开放领域的生成。此外,它还提供了交互式可控性,允许游戏玩法模拟。GameGen-O 的开发涉及从零开始的全面数据收集和处理工作,包括构建首个开放世界视频游戏数据集(OGameData),通过专有的数据管道进行高效的排序、评分、过滤和解耦标题。这个强大且广泛的 OGameData 构成了模型训练过程的基础。
连接大型语言模型与谷歌数据共享平台,减少AI幻觉现象。
DataGemma是世界上首个开放模型,旨在通过谷歌数据共享平台的大量真实世界统计数据,帮助解决AI幻觉问题。这些模型通过两种不同的方法增强了语言模型的事实性和推理能力,从而减少幻觉现象,提升AI的准确性和可靠性。DataGemma模型的推出,是AI技术在提升数据准确性和减少错误信息传播方面的重要进步,对于研究人员、决策者以及普通用户来说,都具有重要的意义。
先进的小型语言模型,专为设备端应用设计。
Zamba2-mini是由Zyphra Technologies Inc.发布的小型语言模型,专为设备端应用设计。它在保持极小的内存占用(<700MB)的同时,实现了与更大模型相媲美的评估分数和性能。该模型采用了4bit量化技术,具有7倍参数下降的同时保持相同性能的特点。Zamba2-mini在推理效率上表现出色,与Phi3-3.8B等更大模型相比,具有更快的首令牌生成时间、更低的内存开销和更低的生成延迟。此外,该模型的权重已开源发布(Apache 2.0),允许研究人员、开发者和公司利用其能力,推动高效基础模型的边界。
高效低成本的小型语言模型
Phi-3是微软Azure推出的一系列小型语言模型(SLMs),具有突破性的性能,同时成本和延迟都很低。这些模型专为生成式AI解决方案设计,体积更小,计算需求更低。Phi-3模型遵循微软AI原则开发,包括责任、透明度、公平性、可靠性和安全性、隐私和安全性以及包容性,确保了安全性。此外,Phi-3还提供了本地部署、准确相关回答、低延迟场景部署、成本受限任务处理和定制化精度等功能。
前沿语言模型,具有先进的推理能力。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
一种用于图像和视频的视觉分割基础模型。
Segment Anything Model 2 (SAM 2)是Meta公司AI研究部门FAIR推出的一个视觉分割模型,它通过简单的变换器架构和流式内存设计,实现实时视频处理。该模型通过用户交互构建了一个模型循环数据引擎,收集了迄今为止最大的视频分割数据集SA-V。SAM 2在该数据集上训练,提供了在广泛任务和视觉领域中的强大性能。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
70亿参数的多方面奖励模型
Llama3-70B-SteerLM-RM是一个70亿参数的语言模型,用作属性预测模型,一个多方面的奖励模型,它在多个方面对模型响应进行评分,而不是传统奖励模型中的单一分数。该模型使用HelpSteer2数据集训练,并通过NVIDIA NeMo-Aligner进行训练,这是一个可扩展的工具包,用于高效和高效的模型对齐。
提升大型语言模型性能的混合代理技术
MoA(Mixture of Agents)是一种新颖的方法,它利用多个大型语言模型(LLMs)的集体优势来提升性能,实现了最先进的结果。MoA采用分层架构,每层包含多个LLM代理,显著超越了GPT-4 Omni在AlpacaEval 2.0上的57.5%得分,达到了65.1%的得分,使用的是仅开源模型。
提升客服团队效率,实现个性化客户服务。
Help Scout提供的AI客服平台,通过人工智能技术,帮助客服团队提升工作效率,减少重复性工作,让团队成员能够专注于更复杂和个性化的客户对话。平台特点包括无需编程即可使用、快速回复、提升客户满意度,以及通过AI生成回复草稿等。
一个由真实世界用户与ChatGPT交互构成的语料库。
WildChat数据集是一个由100万真实世界用户与ChatGPT交互组成的语料库,特点是语言多样和用户提示的多样性。该数据集用于微调Meta的Llama-2,创建了WildLlama-7b-user-assistant聊天机器人,能够预测用户提示和助手回应。
一个公益项目,致力于帮助国内AI开发者快速、稳定的下载模型、数据集。
HuggingFace镜像站是一个非盈利性项目,旨在为国内的AI开发者提供一个快速且稳定的模型和数据集下载平台。通过优化下载过程,减少因网络问题导致的中断,它极大地提高了开发者的工作效率。该镜像站支持多种下载方式,包括网页直接下载、使用官方命令行工具huggingface-cli、本站开发的hfd下载工具以及通过设置环境变量来实现非侵入式下载。
将音频转换为LLM数据
ragobble是一个利用人工智能将音频文件转换为文档的平台。通过将在线视频和音频信息转换为可向量化的RAG文档,用户可以将生成的文档应用于其LLM实例或服务器,为其模型提供最新的知识。ragobble提供了一种快速简单的方式,将视频音频转换为文档,使用户可以为模型提供最新的信息,从而可以推断出仅在几秒钟前记录的数据。
GPT聊天机器人,智能AI对话
GPT Chatbot是由OpenAI开发的AI语言模型。GPT采用Transformer架构,擅长理解和生成人类化的文本。经过大量互联网数据集的预训练,GPT理解上下文、句法和语义,使其能够生成相关的回应。GPT的优势在于其能够从多样的语言数据中推断出模式,从而完成对话、回答问题和内容创作等任务。与基于规则的系统不同,GPT动态生成回应,展现了在各个领域的适应性。其应用范围从语言翻译到支持创意写作等。通过整合深度学习技术,GPT捕捉复杂的语言结构,使其能够生成连贯且上下文相关的文本。这一预训练阶段赋予了GPT广泛的语言理解,使其成为执行众多与语言相关任务的多功能工具。
快速创建交互式AI,支持自定义问答
FrequentlyAskedAI是一个无代码平台,用户可以快速创建自己的交互式AI问答机器人,支持自定义问题及答案。用户可以将机器人嵌入到自己的网站、小程序等,来回答客户的常见问题,提高转化率。关键功能包括:自定义问答、情感交互、多语言支持等。适用于各类企业的客户服务场景,可以24小时回答客户问题,降低人工客服成本。
AI客服,提升效率,个性化服务
ChatPuma是一款AI动力的无代码聊天机器人构建平台,可让您在几分钟内创建并部署到您的网站。它旨在利用您网站的相关数据,通过可嵌入的聊天气泡为您的客户提供实时准确的答案。
端到端MLLM,实现精准引用和定位
ml-ferret是一个端到端的机器学习语言模型(MLLM),能够接受各种形式的引用并响应性地在多模态环境中进行精准定位。它结合了混合区域表示和空间感知的视觉采样器,支持细粒度和开放词汇的引用和定位。此外,ml-ferret还包括GRIT数据集(约110万个样本)和Ferret-Bench评估基准。
AI Email客服
ResolveBot是一款AI驱动的解决方案,可优化电子邮件客服,提供更快、更准确的响应,尤其适用于电子商务。我们会为您设置和配置机器人,您只需将收件箱转发到我们提供的邮件域名。ResolveBot可以自动处理客户问题,让您专注于经营业务的愉快部分。更快,更智能,比人工客服成本低100倍。
© 2024 AIbase 备案号:闽ICP备08105208号-14