浏览量:99
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
将Common Crawl转化为精细的长期预训练数据集
Nemotron-CC是一个基于Common Crawl的6.3万亿token的数据集。它通过分类器集成、合成数据改写和减少启发式过滤器的依赖,将英文Common Crawl转化为一个6.3万亿token的长期预训练数据集,包含4.4万亿全球去重的原始token和1.9万亿合成生成的token。该数据集在准确性和数据量之间取得了更好的平衡,对于训练大型语言模型具有重要意义。
高质量英文网页数据集
FineWeb数据集包含超过15万亿个经过清洗和去重的英文网页数据,来源于CommonCrawl。该数据集专为大型语言模型预训练设计,旨在推动开源模型的发展。数据集经过精心处理和筛选,以确保高质量,适用于各种自然语言处理任务。
多语言预训练语言模型
「书生·浦语2.0」InternLM2是一个面向中文和英文的大型多语言预训练语言模型。它具有语言理解、自然语言生成、多模式推理、代码理解等强大的能力。模型采用Transformer架构并进行海量数据的预训练,在长文本理解、对话、数学运算等多个方向上都达到了业界领先水平。该系列模型包含多种规模,用户可以选择合适的模型进行下游任务微调或构建聊天机器人等应用。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
开源的中英双语预训练语言模型
LingoWhale-8B是一个开源的大规模中英双语预训练语言模型,具有强大的自然语言理解和生成能力。它通过在海量高质量中英文数据上进行预训练,可以完成长文本的理解和多轮交互。该模型采用Transformer架构,参数量达80亿。它在多个中文和英文公开基准测试上都取得了领先的效果。LingoWhale-8B完全开放给学术研究使用,个人开发者可以免费用于商业用途。该模型可以广泛应用于聊天机器人、知识问答、文本生成等领域。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
基于自然语言输入的图像修复算法
Inst-Inpaint是一种图像修复算法,可以根据自然语言输入估计要删除的对象并同时删除它。该产品提供了一个名为GQA-Inpaint的数据集,以及一种名为Inst-Inpaint的新型修复框架,可以根据文本提示从图像中删除对象。该产品提供了各种GAN和扩散基线,并在合成和真实图像数据集上运行实验。该产品提供了不同的评估指标,以衡量模型的质量和准确性,并显示出显著的定量和定性改进。
数据库查询的自然语言处理基准测试
TAG-Bench是一个用于评估和研究自然语言处理模型在回答数据库查询方面性能的基准测试。它基于BIRD Text2SQL基准测试构建,并通过增加对世界知识或超越数据库中明确信息的语义推理要求,提高了查询的复杂性。TAG-Bench旨在推动AI和数据库技术的融合,通过模拟真实的数据库查询场景,为研究者提供了一个挑战现有模型的平台。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
与数据库对话,用自然语言查询数据。
Chat with your Database 是一个创新的数据库交互工具,它允许用户通过自然语言与Postgres数据库进行交互。利用AI技术,用户可以轻松地查询、分析和操作数据库,而无需编写复杂的SQL代码。该产品支持开源,鼓励社区参与开发和贡献,代码在GitHub上公开,用户可以自由探索、贡献或定制以满足特定需求。
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
新一代开源预训练模型,支持多语言和高级功能
GLM-4-9B是智谱AI推出的新一代预训练模型,属于GLM-4系列中的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中表现优异,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。此外,还支持包括日语、韩语、德语在内的26种语言,并有支持1M上下文长度的模型版本。
使用自然语言与数据互动
Raw Query是一款使用先进的人工智能技术让您像与团队成员交谈一样与数据库交谈的工具。无论您是需要了解最新加入Pro计划的客户,还是需要添加新的销售或更新客户的电子邮件,Raw Query都能为您完成。它可以帮助您查询数据、添加数据、更新数据,让您的工作更加高效。
大规模多语言文本数据集
allenai/tulu-3-sft-olmo-2-mixture是一个大规模的多语言数据集,包含了用于训练和微调语言模型的多样化文本样本。该数据集的重要性在于它为研究人员和开发者提供了丰富的语言资源,以改进和优化多语言AI模型的性能。产品背景信息包括其由多个来源的数据混合而成,适用于教育和研究领域,且遵循特定的许可协议。
自然语言界面执行任务
Layerbrain是一款人类语言界面软件,可通过自然语言与任何软件、数据或API交互,执行任务。它可以帮助用户省去繁琐的命令行或编程操作,提高工作效率。Layerbrain还提供了强大的数据处理和分析功能,用户可以使用自然语言查询和分析数据。Layerbrain的定价灵活,用户可以根据自己的需求选择不同的套餐。
大规模多语言偏好混合数据集
OLMo 2 1124 13B Preference Mixture是一个由Hugging Face提供的大型多语言数据集,包含377.7k个生成对,用于训练和优化语言模型,特别是在偏好学习和指令遵循方面。该数据集的重要性在于它提供了一个多样化和大规模的数据环境,有助于开发更加精准和个性化的语言处理技术。
通过自然语言查询数据库,快速获取数据洞察。
Sequel是一个自然语言数据库接口,它允许用户使用自然语言查询数据库,无需编写SQL查询。它通过自然语言处理技术将问题转换为SQL查询,并执行这些查询以返回结果。Sequel支持多种数据库,如PostgreSQL、MySQL和SQLite,并确保与现有数据库的安全连接。它旨在帮助开发者、数据分析师和商业用户更快速、更高效地查询数据库。
数据标注外包服务,为计算机视觉或自然语言处理模型提供数据标注和标签
为什么选择 Innovatiana 进行数据标注外包?Innovatiana 是一家致力于为您的人工智能需求提供有意义和有影响力的外包服务的公司。我们在马达加斯加招聘并培训我们自己的数据标注团队,为他们提供公平的薪水、良好的工作条件和职业发展机会。我们拒绝使用众包实践,为您提供有意义和有影响力的外包服务,并透明地提供用于人工智能的数据来源。我们的任务由一位英语或法语经理负责,以实现紧密的管理和沟通。我们提供灵活的价格,根据您的需求和预算定价。我们重视数据的安全性和机密性,并采取最佳的信息安全实践来保护数据。我们的数据标注专家经过专业培训,为您提供高质量的标注数据,用于培训您的人工智能模型。
Python自然语言处理工具包
NLTK是一个领先的Python平台,用于处理人类语言数据。它提供了易于使用的接口,用于访问50多个语料库和词汇资源,如WordNet,并提供了一套文本处理库,用于分类、标记、解析和语义推理。它还提供了工业级NLP库的封装,并有一个活跃的讨论论坛。NLTK适用于语言学家、工程师、学生、教育者、研究人员和行业用户。NLTK可以免费使用,并且是一个开源的社区驱动项目。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
© 2025 AIbase 备案号:闽ICP备08105208号-14