需求人群:
"始智AI适用于需要使用AI模型和数据集的科研单位、企事业单位和个人。"
使用场景示例:
一家科研单位需要使用图像识别模型,选择了始智AI提供的图像识别模型
一家企业需要使用自然语言处理模型,选择了始智AI提供的自然语言处理模型
一名个人需要使用视频处理模型,选择了始智AI提供的视频处理模型
产品特色:
提供多种类型的AI模型和数据集
定价合理,用户可以根据自己的需求选择不同的套餐
致力于为科研单位、企事业单位和个人提供高质量的AI模型和数据集
浏览量:226
最新流量情况
月访问量
10.60k
平均访问时长
00:02:35
每次访问页数
2.96
跳出率
65.06%
流量来源
直接访问
54.34%
自然搜索
19.84%
邮件
0.13%
外链引荐
24.37%
社交媒体
0.93%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
75.97%
印度
3.36%
日本
2.28%
AI模型数据集平台
始智AI是一家提供AI模型和数据集的平台,致力于为科研单位、企事业单位和个人提供高质量的AI模型和数据集。始智AI的优势在于提供多种类型的AI模型和数据集,包括图像、视频、自然语言处理等,用户可以根据自己的需求选择合适的模型和数据集。始智AI的定价合理,用户可以根据自己的需求选择不同的套餐,满足不同的需求。始智AI的定位是成为AI模型和数据集领域的领先平台。
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
AI模型库与数据集平台
I2VGen-XL是一款AI模型库与数据集平台,提供丰富的AI模型和数据集,帮助用户快速构建AI应用。平台支持多种AI任务,包括图像识别、自然语言处理、语音识别等。用户可以通过平台上传、下载和分享模型和数据集,也可以使用平台提供的API接口进行调用。平台提供免费和付费两种服务,用户可以根据需求选择适合自己的服务。
智能生成各类学术论文的在线科研助手
橙语AI科研助手是一款基于先进语言模型的在线工具,旨在帮助用户快速生成各类学术论文。该工具采用Multimodal+Global Thought Chain语言模型,能够生成连贯、一致且逻辑性强的长文本。其主要优点包括高效生成、低重复率和广泛的学术领域覆盖。产品定位为科研人员和学生的辅助工具,帮助他们节省时间,提高论文写作效率。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
AI科研助手
Iris.ai是一款基于人工智能的科研助手,能够帮助研究人员进行文献综述、研究数据提取、市场监测等繁琐任务。它能够理解科学文本,提供高效的文献搜索和分析工具,并能够自动抽取关键信息。Iris.ai的智能功能使得科研工作更加高效和准确。
智能语音生成与数据集
ClearCypherAI是一家总部位于美国的AI初创公司,致力于构建前沿的解决方案。我们的产品包括文本转语音(T2A)、语音转文本(A2T)和语音转语音(A2A),支持多语言、多模态、实时语音智能。我们还提供自然语言数据集、威胁评估、AI定制平台等服务。我们的产品具有高度定制性、先进的技术和优质的客户支持。
一个用于训练高性能奖励模型的开源数据集。
HelpSteer2是由NVIDIA发布的一个开源数据集,旨在支持训练能够对齐模型以使其更加有帮助、事实正确和连贯,同时在响应的复杂性和冗余度方面具有可调节性。该数据集与Scale AI合作创建,当与Llama 3 70B基础模型一起使用时,在RewardBench上达到了88.8%的表现,是截至2024年6月12日最佳的奖励模型之一。
高质量开放数据集平台,为大型模型提供数据支持
OpenDataLab是一个开源数据平台,提供高质量的开放数据集,支持大型AI模型的训练和应用。平台容量巨大,包含5500多个数据集,涵盖1500多种任务类型,总数据量达到80TB以上,下载量超过1064500次。平台提供30多种应用场景、20多种标注类型和5种数据类型,支持数据结构、标注格式和在线可视化的统一标准,实现数据的开放共享和智能搜索,提供结构化的数据信息和可视化的注释和数据分布,方便用户阅读和筛选。平台提供快速下载服务,无需VPN即可从国内云端快速下载数据。
数据标注专家 - 为您的训练数据集进行标注
数据标注专家是一个为您提供优质训练数据集的数据标注服务平台。我们拥有专业的团队、先进的标注工具和有效的方法论,致力于帮助您获得更好的训练数据集。我们的服务包括数据标注、算法调优、数据清洗等。无论您是需要图像标注、文本标注还是其他类型的标注,我们都可以满足您的需求。
收集和梳理垂直领域的开源模型、数据集及评测基准
Awesome-Domain-LLM是一个收集和梳理垂直领域的开源模型、数据集及评测基准的项目。该项目收录了包括医疗、法律、金融、教育等多个领域的开源模型、数据集和评测基准,旨在推动大模型赋能各行各业。用户可以在该项目中找到适合自己领域的模型和数据集,以提高工作效率和质量。
TOFU数据集为大型语言模型的虚构遗忘任务提供基准。
TOFU数据集包含根据不存在的200位作者虚构生成的问答对,用于评估大型语言模型在真实任务上的遗忘性能。该任务的目标是遗忘在各种遗忘集比例上经过微调的模型。该数据集采用问答格式,非常适合用于流行的聊天模型,如Llama2、Mistral或Qwen。但是,它也适用于任何其他大型语言模型。对应的代码库是针对Llama2聊天和Phi-1.5模型编写的,但可以轻松地适配到其他模型。
生成合成数据,管理数据,提高数据质量,构建最佳AI项目数据集。
YData是一个数据中心AI平台,提供生成合成数据、管理数据、提高数据质量和构建最佳AI项目数据集的功能。通过YData,您可以生成高质量的合成数据集,对数据进行管理和改进,构建出适用于您的AI项目的最佳数据集。YData还提供数据目录、数据配置和数据测量等功能。YData的定价信息,请联系官方获取。YData定位为数据科学领域的数据质量工具。
智能数据处理工具,简化科研流程
Hepta是一款智能数据处理工具,能够自动处理数据,生成表格、图表和统计分析结果,极大地简化科研流程。其AI驱动的统计功能能够为科研工作者提供强大的支持。产品售价为$97的终身许可,定位于科研人员和数据分析人群。
一个公益项目,致力于帮助国内AI开发者快速、稳定的下载模型、数据集。
HuggingFace镜像站是一个非盈利性项目,旨在为国内的AI开发者提供一个快速且稳定的模型和数据集下载平台。通过优化下载过程,减少因网络问题导致的中断,它极大地提高了开发者的工作效率。该镜像站支持多种下载方式,包括网页直接下载、使用官方命令行工具huggingface-cli、本站开发的hfd下载工具以及通过设置环境变量来实现非侵入式下载。
高质量的AI客服数据集,训练智能客服
Botdocs是一系列高质量的数据集,用于训练人工智能处理常见的客服互动。它可用于训练大型语言模型、意图分类器和自然语言理解引擎,以帮助企业自动化常见的客服互动,并提供对客户意图的理解和提供卓越的客户体验。Botdocs以CSV、JSONL和Dialogflow(ES)格式提供,以满足AI开发人员和系统对大型语言模型、意图分类器和自然语言理解引擎的不同需求。
大规模图像描述数据集,提供超过16M的合成图像描述。
PixelProse是一个由tomg-group-umd创建的大规模数据集,它利用先进的视觉-语言模型Gemini 1.0 Pro Vision生成了超过1600万个详细的图像描述。这个数据集对于开发和改进图像到文本的转换技术具有重要意义,可以用于图像描述生成、视觉问答等任务。
AI数据引擎,涵盖标注、工作流、数据集和人工智能
V7是一个AI数据引擎,提供企业级训练数据的完整基础设施,涵盖标注、工作流、数据集和人工在循环中。它能够帮助用户快速高效地标注、处理和管理训练数据,提高AI模型的准确性和性能。V7支持自动化标注、视频标注、文档处理等功能,适用于各种行业和应用场景。
AI科研文献综述助手
Seaml.es是一款AI辅助工具,能够帮助科研人员快速撰写文献综述。它能够从相关文献中提取信息,创建草稿,并提供高效的编辑和校对功能。用户可以通过免费试用3个积分来体验其功能,而Pro版本则提供更多的积分和更高质量的模型。Seaml.es的优势在于提高文献综述的撰写效率,节省研究人员的时间。定价灵活,定位于科研人员和学术机构。
用于训练通用目标分割模型的视频数据集
SA-V Dataset是一个专为训练通用目标分割模型设计的开放世界视频数据集,包含51K个多样化视频和643K个时空分割掩模(masklets)。该数据集用于计算机视觉研究,允许在CC BY 4.0许可下使用。视频内容多样,包括地点、对象和场景等主题,掩模从建筑物等大规模对象到室内装饰等细节不等。
数学文本智能标记数据集
AutoMathText是一个广泛且精心策划的数据集,包含约200GB的数学文本。数据集中的每条内容都被最先进的开源语言模型Qwen进行自主选择和评分,确保高标准的相关性和质量。该数据集特别适合促进数学和人工智能交叉领域的高级研究,作为学习和教授复杂数学概念的教育工具,以及为开发和训练专门处理和理解数学内容的AI模型提供基础。
Apollo是一个多语言医学领域的模型、数据集、基准和代码库
Apollo项目由FreedomIntelligence组织维护,旨在通过提供多语言医学领域的大型语言模型(LLMs)来民主化医疗AI,覆盖6亿人。该项目包括模型、数据集、基准测试和相关代码。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
数据定制化服务,助力模型精准微调
Bespoke Labs专注于提供高质量的定制化数据集服务,以支持工程师进行精确的模型微调。公司由Google DeepMind的前员工Mahesh和UT Austin的Alex共同创立,旨在改善高质量数据的获取,这对于推动领域发展至关重要。Bespoke Labs提供的工具和平台,如Minicheck、Evalchemy和Curator,都是围绕数据集的创建和管理设计的,以提高数据的质量和模型的性能。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
大规模合成数据集,助力个性化研究
Persona Hub 是腾讯AI实验室发布的一个大规模合成数据集,旨在促进以人物角色为驱动的数据合成研究。该数据集包含数百万不同人物角色的合成数据样本,可用于模拟真实世界用户的多样化输入,对大型语言模型(LLM)进行测试和研究。
© 2025 AIbase 备案号:闽ICP备08105208号-14