需求人群:
["进行数学领域的学术研究","辅助教育工作者更好地讲授数学课程","训练处理数学文本的机器学习模型"]
使用场景示例:
研究人员可以利用该数据集进行数学表示学习等前沿交叉领域研究
教师可以挖掘数据集中的内容,辅助学生学习抽象数学概念
数据科学家可以基于该数据集预训练数学文本处理模型
产品特色:
包含约200GB质量高的数学文本
内容由先进语言模型精心选择评分
适合数学和人工智能高级研究
可作为教授和学习复杂数学概念的教育工具
为开发处理数学内容的AI提供数据基础
浏览量:136
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
数学文本智能标记数据集
AutoMathText是一个广泛且精心策划的数据集,包含约200GB的数学文本。数据集中的每条内容都被最先进的开源语言模型Qwen进行自主选择和评分,确保高标准的相关性和质量。该数据集特别适合促进数学和人工智能交叉领域的高级研究,作为学习和教授复杂数学概念的教育工具,以及为开发和训练专门处理和理解数学内容的AI模型提供基础。
用于强化学习验证的数学问题数据集
RLVR-GSM-MATH-IF-Mixed-Constraints数据集是一个专注于数学问题的数据集,它包含了多种类型的数学问题和相应的解答,用于训练和验证强化学习模型。这个数据集的重要性在于它能够帮助开发更智能的教育辅助工具,提高学生解决数学问题的能力。产品背景信息显示,该数据集由allenai在Hugging Face平台上发布,包含了GSM8k和MATH两个子集,以及带有可验证约束的IF Prompts,适用于MIT License和ODC-BY license。
智能解决数学问题,提升学习效率
AI数学解题器是由数学AI和数学GPT模型(如GPT-4o)驱动的在线工具,旨在提供广泛的数学问题解决方案。它利用先进的人工智能技术,为学生和教师提供详尽的分步解答,增强了对数学概念的理解和解题能力。该产品背景是数学学习中对高效解题工具的需求,定位于免费提供高质量的教育支持。
智能语音生成与数据集
ClearCypherAI是一家总部位于美国的AI初创公司,致力于构建前沿的解决方案。我们的产品包括文本转语音(T2A)、语音转文本(A2T)和语音转语音(A2A),支持多语言、多模态、实时语音智能。我们还提供自然语言数据集、威胁评估、AI定制平台等服务。我们的产品具有高度定制性、先进的技术和优质的客户支持。
AI模型数据集平台
始智AI是一家提供AI模型和数据集的平台,致力于为科研单位、企事业单位和个人提供高质量的AI模型和数据集。始智AI的优势在于提供多种类型的AI模型和数据集,包括图像、视频、自然语言处理等,用户可以根据自己的需求选择合适的模型和数据集。始智AI的定价合理,用户可以根据自己的需求选择不同的套餐,满足不同的需求。始智AI的定位是成为AI模型和数据集领域的领先平台。
数据标注专家 - 为您的训练数据集进行标注
数据标注专家是一个为您提供优质训练数据集的数据标注服务平台。我们拥有专业的团队、先进的标注工具和有效的方法论,致力于帮助您获得更好的训练数据集。我们的服务包括数据标注、算法调优、数据清洗等。无论您是需要图像标注、文本标注还是其他类型的标注,我们都可以满足您的需求。
生成合成数据,管理数据,提高数据质量,构建最佳AI项目数据集。
YData是一个数据中心AI平台,提供生成合成数据、管理数据、提高数据质量和构建最佳AI项目数据集的功能。通过YData,您可以生成高质量的合成数据集,对数据进行管理和改进,构建出适用于您的AI项目的最佳数据集。YData还提供数据目录、数据配置和数据测量等功能。YData的定价信息,请联系官方获取。YData定位为数据科学领域的数据质量工具。
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
你的数学助手
Photo2math是一款数学助手APP,可以帮助用户解决数学问题。它提供了多种功能,包括解决数学题目、上传图片解题、手写公式解题等。Albert Bro可以帮助学生和教师更轻松地学习和教授数学知识。
大规模多语言文本数据集
allenai/tulu-3-sft-olmo-2-mixture是一个大规模的多语言数据集,包含了用于训练和微调语言模型的多样化文本样本。该数据集的重要性在于它为研究人员和开发者提供了丰富的语言资源,以改进和优化多语言AI模型的性能。产品背景信息包括其由多个来源的数据混合而成,适用于教育和研究领域,且遵循特定的许可协议。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
构建数学基础模型的数学中心语料库
MathPile是一个包含约95亿个标记的数学中心语料库,从教科书(包括讲座笔记)、arXiv、维基百科、ProofWiki、StackExchange和网页中汲取数学内容,适用于K-12、大学、研究生水平和数学竞赛。MathPile的数据质量高,并且有着丰富的数据文档,以增强透明度和给用户灵活的使用数据的能力。在授权方面,MathPile遵循BY-NC-SA 4.0许可协议,同时计划很快发布一个商业可用版本。
首个说唱音乐生成数据集
RapBank是一个专注于说唱音乐的数据集,它从YouTube收集了大量说唱歌曲,并提供了一个精心设计的数据预处理流程。这个数据集对于音乐生成领域具有重要意义,因为它提供了大量的说唱音乐内容,可以用于训练和测试音乐生成模型。RapBank数据集包含94,164首歌曲链接,成功下载了92,371首歌曲,总时长达到5,586小时,覆盖84种不同的语言,其中英语歌曲的总时长最高,占总时长的大约三分之二。
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
数学领域的开源AI模型,助力数学竞赛。
Numina Math 7B是由Numina组织开发的AI数学模型,专注于解决高难度的数学问题,特别是在数学竞赛领域。该模型在AI数学奥林匹克竞赛中获得了第一名,显示出其在解决复杂数学问题上的强大能力。Numina是一个非盈利组织,致力于推动数学领域人类和人工智能的发展。
大规模图像编辑数据集
UltraEdit是一个大规模的图像编辑数据集,包含约400万份编辑样本,自动生成,基于指令的图像编辑。它通过利用大型语言模型(LLMs)的创造力和人类评估员的上下文编辑示例,提供了一个系统化的方法来生产大规模和高质量的图像编辑样本。UltraEdit的主要优点包括:1) 它通过利用大型语言模型的创造力和人类评估员的上下文编辑示例,提供了更广泛的编辑指令;2) 其数据源基于真实图像,包括照片和艺术作品,提供了更大的多样性和减少了偏见;3) 它还支持基于区域的编辑,通过高质量、自动生成的区域注释得到增强。
大规模视频自动配音数据集
ANIM-400K是一个包含超过425,000个对齐的日语和英语动画视频片段的综合数据集,支持自动配音、同声翻译、视频摘要、流派/主题/风格分类等各种视频相关任务。该数据集公开用于研究目的。
数学AI解决方案
AI Math是一个在线免费的数学AI解决方案,帮助您克服数学困难,提供99%准确的解决方案。它可以处理算术、代数、几何、三角、微积分、组合、统计概率等各种数学问题。AI Math不仅提供答案,还通过逐步解释帮助您理解解决过程。您可以随时随地访问AI Math,它是教育者和学生的强大支持系统。
生成计算机视觉的合成数据集
Datagen是一个可通过平台或API访问的合成图像数据集,可根据需要生成逼真的全身人像和人与物体在不同环境中互动的场景。用户可以通过代码对单个参数进行完全控制,实现人类中心数据集的设计和生成。
SnapXam是一个数学虚拟助手,可帮助您更快、更轻松地学习数学。具有步骤的数学求解器。
SnapXam是一个使用人工智能技术的数学学习工具,可以帮助用户理解和解决从算术到微积分的数学问题。它节省了理解数学概念和查找解释视频的时间。用户可以以更好的方式解决问题,并节省大量时间。
高质量英文网页数据集
FineWeb数据集包含超过15万亿个经过清洗和去重的英文网页数据,来源于CommonCrawl。该数据集专为大型语言模型预训练设计,旨在推动开源模型的发展。数据集经过精心处理和筛选,以确保高质量,适用于各种自然语言处理任务。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
AI数学极限测试基准
FrontierMath是一个数学基准测试平台,旨在测试人工智能在解决复杂数学问题上的能力极限。它由超过60位数学家共同创建,覆盖了从代数几何到Zermelo-Fraenkel集合论的现代数学全谱。FrontierMath的每个问题都要求专家数学家投入数小时的工作,即使是最先进的AI系统,如GPT-4和Gemini,也仅能解决不到2%的问题。这个平台提供了一个真正的评估环境,所有问题都是新的且未发表的,消除了现有基准测试中普遍存在的数据污染问题。
AI数据引擎,涵盖标注、工作流、数据集和人工智能
V7是一个AI数据引擎,提供企业级训练数据的完整基础设施,涵盖标注、工作流、数据集和人工在循环中。它能够帮助用户快速高效地标注、处理和管理训练数据,提高AI模型的准确性和性能。V7支持自动化标注、视频标注、文档处理等功能,适用于各种行业和应用场景。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
800K+个3D物体的大规模数据集
Objaverse是一个包含800K+个标注3D物体的大规模数据集,每个物体都有名称、描述、标签和其他元数据。它包含了各种类型的物体,包括静态物体、动画物体、有部位注释的角色、可分解的模型、室内外环境等,并具有多样的视觉风格。Objaverse可用于生成3D模型、作为2D实例分割的增强、开放词汇体现的AI以及研究CLIP的鲁棒性。
© 2025 AIbase 备案号:闽ICP备08105208号-14