浏览量:51
最新流量情况
月访问量
190.93k
平均访问时长
00:00:52
每次访问页数
1.78
跳出率
53.45%
流量来源
直接访问
32.34%
自然搜索
58.96%
邮件
0.09%
外链引荐
6.15%
社交媒体
2.00%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
澳大利亚
6.06%
加拿大
6.39%
印度
6.81%
菲律宾
4.07%
美国
25.38%
无需编码的分析师生成BI
Akkio是一个易于使用、可扩展且价格合理的AI平台,用于实时决策。它提供了生成式BI功能,可以与数据交互、构建可视化和洞察,并在几分钟内创建机器学习模型。Akkio帮助您提升业务影响力,增加生产力、速度和效率。
数学视觉指令调优模型
MAVIS是一个针对多模态大型语言模型(MLLMs)的数学视觉指令调优模型,主要通过改进视觉编码数学图表、图表-语言对齐和数学推理技能来增强MLLMs在视觉数学问题解决方面的能力。该模型包括两个新策划的数据集、一个数学视觉编码器和数学MLLM,通过三阶段训练范式在MathVerse基准测试中取得领先性能。
Twitter洞察的大型语言模型
Twitter-Insight-LLM是一个基于Twitter数据的大型语言模型,旨在提供对Twitter平台上的文本数据进行深入分析的能力。该模型可能用于情感分析、趋势预测、用户行为研究等。
Unity深度学习推理库
Sentis是一个Unity中的神经网络推理库。您可以使用Sentis将训练好的神经网络模型导入Unity,然后在Unity支持的任何平台上本地实时运行它们。您可以在GPU或CPU上运行模型。使用Sentis需要一些使用机器学习模型的经验,例如在TensorFlow或PyTorch等框架中。
数据科学平台,提供数据准备、模型构建、部署管理等全流程支持
RapidMiner是一个端到端的数据科学平台。它为数据准备、模型构建、部署管理等提供强大支持,可以大大提高团队的数据科学效率。该平台易于上手,同时保证可扩展性好、可管控性强、安全可靠。
一个开源的企业级数据科学平台
Domino Data Lab是一个统一、协作、管控的端到端企业级AI平台。该平台可以在任何环境下构建、部署和管理AI模型,访问任何环境下的数据、工具、计算和项目。Domino Data Lab通过建立最佳实践、跟踪生产中的模型以及加强治理,帮助企业加速AI应用、扩大AI规模,同时确保治理并降低成本。
IBM Watson Studio是一个IDE,用于构建、运行和管理AI模型。
IBM Watson Studio是一个协作平台,使数据科学家、开发人员和分析师能够构建、训练和部署机器学习模型。它支持各种数据源,使团队能够简化其工作流程。借助高级功能,如自动机器学习和模型监控,Watson Studio用户可以在整个开发和部署生命周期中管理其模型。
DataRobot AI 平台,实现自动建模和可视化
DataRobot 是面向企业的开放 AI 平台,支持全面的 AI 生命周期管理,包括自动机器学习、模型监控以及 AI 管控。该平台支持在云和混合环境下的可扩展、可再生的 AI,可应用于各行各业的预测建模和生成式 AI,帮助企业快速实施 AI 并产生价值。
低代码的python机器学习库
PyCaret是一个开源的、低代码的Python机器学习库,它可以自动化机器学习工作流程。PyCaret 可以让你花费更少的时间编写代码,更多的时间用于分析。PyCaret模块化设计,每个模块封装了特定的机器学习任务。PyCaret中一致的函数集可以在工作流中执行任务。PyCaret中有许多数据预处理功能可供选择,从缩放到特征工程。有大量有趣的教程可以帮助你学习PyCaret,你可以从我们的官方教程开始。PyCaret使机器学习变得简单有趣。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
轻松创建你自己的机器学习模型
Teachable Machine是一个基于网页的工具,使用户可以快速轻松地创建机器学习模型,无需专业知识或编码能力。用户只需收集并整理样本数据,Teachable Machine将自动训练模型,然后用户可以测试模型准确性,最后将模型导出使用。
世界领先的数据科学学习平台
Kaggle是一个面向数据科学家的在线学习平台。它提供了各种数据集、代码示例、论坛交流、在线课程和机器学习竞赛。用户可以在这个平台上免费学习数据科学相关知识,与同行交流并参与机器学习竞赛实践。
在浏览器中编写和执行代码
Colaboratory(简称Colab)是谷歌研究团队推出的一个在线编程平台,用户可以在浏览器中编写和执行Python代码,并利用谷歌云端的免费GPU/TPU资源加速运行。Colab提供代码编辑器、交互执行、可视化结果等功能,可以插入文本、公式、图像,是进行数据分析、机器学习等工作的好助手。主要优势有:无需配置,免费使用GPU,方便分享等。适用于学生、数据科学家、AI研究人员等编写Python代码。
和鲸社区是一个开源的数据科学社区平台
和鲸社区是一个面向数据科学爱好者和从业者的开源社区。用户可以在这里学习各种数据科学相关知识,分享代码、案例和数据集,参与数据竞赛等。平台集成了多种数据科学常用工具,提供免费的云计算资源。
开放平台
灵云开放平台免费为开发者提供语音合成(TTS)、语音识别(ASR)、手写识别(HWR)、光学字符识别(OCR)、语义理解(NLU)、机器翻译(MT)等全方位智能人机交互能力,通过语音、视觉等感知能力,赋能移动应用、智能硬件等领域,实现人机交互的自然、智能化。
开源跨平台的机器学习框架,能够轻松地在不同设备上构建机器学习应用
MediaPipe是一个由Google开发的开源跨平台机器学习框架,它能够帮助开发者通过简单的API轻松地在不同设备(手机、平板、浏览器、IoT设备等)上构建复杂的机器学习模型和应用。MediaPipe支持多种编程语言,内置了人脸识别、手势识别、目标追踪等多种预训练模型,开发者可以快速集成这些模型来开发智能应用。MediaPipe还支持模型压缩和量化技术,可以将模型大小缩小10倍以上,这对于在移动端部署机器学习模型非常有利。总体来说,MediaPipe是一个非常易用和高效的机器学习开发框架。
提供模型探索体验、推理、训练、部署和应用服务
魔搭社区是一个人工智能模型的开发者社区。它汇聚各领域最先进的机器学习模型,为用户提供模型探索、定制、训练、部署和应用的一站式服务。用户可以便捷地搜索感兴趣的模型,快速上手使用。同时,社区还开源了众多预训练模型,开发者可以基于这些模型进行二次开发。魔搭社区致力于降低AI开发门槛,帮助开发者更便捷地获取、使用AI能力。
构建和部署AI模型的机器学习框架
Cerebrium是一个机器学习框架,通过几行代码轻松训练、部署和监控机器学习模型。我们在无服务器的CPU/GPU上运行所有内容,并仅根据使用量收费。您可以从Pytorch、Huggingface、Tensorflow等库部署模型。
无代码文本分析。免费开始!
MonkeyLearn是一个无代码文本分析工具,可以清洗、标记和可视化客户反馈。它基于先进的人工智能技术,帮助用户从数据中获得洞察力。MonkeyLearn提供即时数据可视化和详细的分析结果,支持自定义图表和过滤器。用户可以使用现成的机器学习模型,也可以自己构建和训练模型。MonkeyLearn还提供针对不同业务场景的模板,帮助用户快速分析数据并获得实用的见解。
机器学习轻松入门
Lobe是一个免费、易于使用的工具,帮助您训练自定义的机器学习模型,并在您的应用程序中使用。Lobe具备一切您需要将机器学习想法实现的功能。只需展示给它您想让它学习的示例,它就会自动训练一个定制的机器学习模型,可在您的应用程序中使用。
一键完成整个数据科学流程,构建机器学习算法,解释结果和预测结果
Obviously AI是一个最快、最精确的无代码AI工具,让您能够在几分钟内从原始数据转变为行业领先的预测模型,而不是几个月。它包括构建突破性的AI模型、将模型部署到生产环境、监控模型性能、集成和共享预测数据以及专业支持等功能。通过Obviously AI,您可以节省复杂的AI模型构建时间,并获得整个数据科学团队的支持。
一个简单易用的语音克隆和语音模型训练工具。
EaseVoice Trainer 是一个后端项目,旨在简化和增强语音合成与转换训练过程。该项目基于 GPT-SoVITS 进行改进,注重用户体验和系统的可维护性。其设计理念不同于原始项目,旨在提供更模块化和定制化的解决方案,适用于从小规模实验到大规模生产的多种场景。该工具可以帮助开发者和研究人员更高效地进行语音合成和转换的研究与开发。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
通过生成推理扩大过程奖励模型的测试时间计算。
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。这项技术能够在处理复杂任务时提供更准确的奖励评估,适用于多种机器学习和人工智能领域的应用。其主要优点是能够在资源有限的情况下优化模型性能,并在实际应用中降低计算成本。
昆仑万维开源的高性能数学代码推理模型,性能卓越
Skywork-OR1是由昆仑万维天工团队开发的高性能数学代码推理模型。该模型系列在同等参数规模下实现了业界领先的推理性能,突破了大模型在逻辑理解与复杂任务求解方面的能力瓶颈。Skywork-OR1系列包括Skywork-OR1-Math-7B、Skywork-OR1-7B-Preview和Skywork-OR1-32B-Preview三款模型,分别聚焦数学推理、通用推理和高性能推理任务。此次开源不仅涵盖模型权重,还全面开放了训练数据集和完整训练代码,所有资源均已上传至GitHub和Huggingface平台,为AI社区提供了完全可复现的实践参考。这种全方位的开源策略有助于推动整个AI社区在推理能力研究上的共同进步。
Pusa 是一个新颖的视频扩散模型,支持多种视频生成任务。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。
© 2025 AIbase 备案号:闽ICP备08105208号-14