需求人群:
"SuperSonic的目标受众是数据分析师和业务用户,他们需要一个能够通过自然语言查询和分析数据的平台。该产品适合他们,因为它简化了数据查询和分析的过程,使得非技术用户也能够轻松地访问和分析数据,同时为技术用户提供了强大的语义数据模型构建工具。"
使用场景示例:
数据分析师使用SuperSonic通过自然语言查询快速获取关键业务指标。
业务用户利用SuperSonic的可视化工具直观展示数据分析结果。
技术团队通过SuperSonic的Headless BI界面构建和优化语义数据模型。
产品特色:
内置Chat BI界面,支持使用自然语言查询数据
内置Headless BI界面,供分析工程师构建语义数据模型
内置基于规则的语义解析器,提高特定场景下的效率
支持输入自动完成、多轮对话以及查询后推荐
支持三级数据访问控制:数据集级别、列级别和行级别
知识库定期从语义模型中提取架构信息,构建字典和索引以促进架构映射
模式映射器识别用户查询中的架构元素引用,匹配查询文本与知识库
语义解析器理解用户查询并生成语义查询语句,结合了基于规则和基于模型的解析器
语义校正器检查语义查询语句的有效性,并在需要时进行校正和优化
语义翻译器将语义查询语句转换为可执行的SQL语句
使用教程:
下载最新预构建的二进制文件。
运行脚本 'assembly/bin/supersonic-daemon.sh start' 启动独立的Java服务。
在浏览器中访问 http://localhost:9080 开始探索。
浏览量:40
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
下一代BI平台,融合Chat BI和Headless BI。
SuperSonic是一个集成了由大型语言模型(LLM)驱动的Chat BI和由语义层驱动的Headless BI的下一代商业智能(BI)平台。它确保Chat BI能够访问与传统BI相同的经过策划和治理的语义数据模型。此外,这两种范式的实现都从集成中受益:Chat BI的Text2SQL通过从语义模型中检索上下文得到增强;Headless BI的查询接口通过自然语言API得到扩展。SuperSonic提供了一个Chat BI界面,使用户能够使用自然语言查询数据,并以适当的图表可视化结果。要实现这种体验,唯一需要的就是通过Headless BI接口构建逻辑语义模型(定义指标/维度/标签及其含义和关系)。同时,SuperSonic被设计为可扩展和可组合的,允许使用Java SPI添加和配置自定义实现。
AI驱动的数据可视化工具
Data Formulator 是微软研究团队开发的一款AI驱动的数据可视化工具,它通过结合用户界面交互和自然语言输入,帮助用户快速创建丰富的数据可视化图表。该工具可以自动处理数据转换,使用户能够专注于图表设计。Data Formulator 支持通过Python安装并本地运行,也可以在GitHub Codespaces中快速启动。它代表了数据分析和可视化领域的技术进步,通过AI技术提高了数据可视化的效率和易用性。
通过自然语言查询数据库,快速获取数据洞察。
Sequel是一个自然语言数据库接口,它允许用户使用自然语言查询数据库,无需编写SQL查询。它通过自然语言处理技术将问题转换为SQL查询,并执行这些查询以返回结果。Sequel支持多种数据库,如PostgreSQL、MySQL和SQLite,并确保与现有数据库的安全连接。它旨在帮助开发者、数据分析师和商业用户更快速、更高效地查询数据库。
通过对话访问数据库的强大工具
Basejump AI是一个通过自然语言处理技术使数据库查询变得简单的平台。它允许用户通过日常语言与数据库进行交互,从而快速获取所需数据,无需编写复杂的SQL查询。这种技术对于提高工作效率、减少数据分析师的工作负担以及使决策更加数据驱动具有重要意义。Basejump AI提供了多种功能,包括实时数据访问、数据点的可视化、数据集合的创建和数据准确性的比较等。它适用于需要快速数据访问的各种行业,如医疗保健、人力资源、软件开发等。产品提供多种定价计划,包括免费试用和不同规模的企业方案。
深入理解Transformer模型的可视化工具
Transformer Explainer是一个致力于帮助用户深入理解Transformer模型的在线可视化工具。它通过图形化的方式展示了Transformer模型的各个组件,包括自注意力机制、前馈网络等,让用户能够直观地看到数据在模型中的流动和处理过程。该工具对于教育和研究领域具有重要意义,可以帮助学生和研究人员更好地理解自然语言处理领域的先进技术。
将Excel转换为仪表板和报告的AI工具。
Excel Dashboard AI是一款利用人工智能技术,将Excel数据快速转换为交互式仪表板和分析报告的工具。它通过自然语言处理能力,允许用户以对话形式与数据进行交流,从而迅速获得洞察。产品的主要优点包括快速生成多样化的数据分析维度、自然语言编辑和锁定分析视角、一键生成交互式仪表板、AI解读图表含义以及将仪表板转换为详尽的分析报告等。
利用大型语言模型生成交互式图表
Interactive Graph by LLM 是一个基于大型语言模型(LLM)的网站,它允许用户通过自然语言提示生成交互式图表。这项技术的重要性在于它简化了数据可视化的过程,使得非技术用户也能够轻松创建和理解复杂的数据。产品背景信息包括其创新的交互方式和对数据可视化的贡献。目前产品处于免费试用阶段,定位于希望简化数据展示流程的企业和个人。
基于人工智能生成及查询不断扩展的知识图谱的概念证明
MindGraph是一个开源、API优先的基于图形的项目原型,旨在实现自然语言交互(输入和输出)。它可作为构建和定制自己的CRM解决方案的模板,重点是易于集成和可扩展性。主要功能包括:实体管理、集成触发器、搜索功能、人工智能整备。它采用模块化架构,通过集成管理器动态注册和执行各种集成函数,使其具有无缝集成人工智能功能的能力。它支持灵活的数据库集成,包括内存数据库和云数据库NexusDB。再加上基于模式的知识图谱创建,使其能够自动从自然语言输入中生成结构化数据。
定制简历,提高求职成功率
简历匹配器是一个免费开源的ATS工具,帮助您根据职位描述定制简历。我们利用自然语言处理技术提取和理解简历和职位描述的内容,通过文本相似度进行比对,展示相似和差异之处,帮助您做出数据驱动的决策。我们提供全面的数据可视化,用户界面友好,支持多语言,欢迎贡献。
CSV数据可视化
Chat2CSV是一个基于自然语言处理的数据可视化工具,将CSV数据转化为各种图表,以直观的方式呈现数据洞察力。通过简单的对话,您可以快速创建各种图表,无需编码或复杂的脚本。我们的平台支持多种图表类型,保护您的数据安全和隐私。试用免费版开始体验吧!
10亿参数的英文文本和代码语言模型
INTELLECT-1-Instruct是一个由Prime Intellect训练的10亿参数语言模型,从零开始在1万亿个英文文本和代码token上进行训练。该模型支持文本生成,并且具有分布式训练的能力,能够在不可靠的、全球分布的工作者上进行高性能训练。它使用了DiLoCo算法进行训练,并利用自定义的int8 all-reduce内核来减少通信负载,显著降低了通信开销。这个模型的背景信息显示,它是由30个独立的社区贡献者提供计算支持,并在3个大洲的14个并发节点上进行训练。
先进的文本生成模型,支持多样化任务处理。
OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
基于Qwen-Agent的Chrome浏览器插件,提供网页和文档讨论、记录及自动化写作功能。
BrowserQwen是一个Chrome浏览器插件,基于Qwen-Agent开发,主要功能包括与Qwen进行当前网页或PDF文档的讨论、记录浏览的网页和PDF/Word/PPT材料以帮助用户理解和总结浏览内容、以及自动化写作任务。此外,它还集成了包括代码解释器在内的插件,用于解决数学问题和数据可视化。BrowserQwen通过提供这些功能,增强了用户对信息的处理能力和创作效率,尤其在学术研究和内容创作领域具有重要价值。产品背景基于提升用户在数字时代的信息处理和创作能力,价格方面,BrowserQwen作为一个开源项目,对用户是免费的。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
高质量数据集,用于OLMo2训练的第二阶段。
DOLMino dataset mix for OLMo2 stage 2 annealing training是一个混合了多种高质数据的数据集,用于在OLMo2模型训练的第二阶段。这个数据集包含了网页页面、STEM论文、百科全书等多种类型的数据,旨在提升模型在文本生成任务中的表现。它的重要性在于为开发更智能、更准确的自然语言处理模型提供了丰富的训练资源。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
基于文本生成姿态并进一步生成图像的模型
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
一款经过优化的大型语言模型,擅长文本生成和对话。
OLMo-2-1124-13B-Instruct是由Allen AI研究所开发的一款大型语言模型,专注于文本生成和对话任务。该模型在多个任务上表现出色,包括数学问题解答、科学问题解答等。它是基于13B参数的版本,经过在特定数据集上的监督微调和强化学习训练,以提高其性能和安全性。作为一个开源模型,它允许研究人员和开发者探索和改进语言模型的科学。
高性能的英文学术基准语言模型
OLMo 2 13B是由Allen Institute for AI (Ai2)开发的一款基于Transformer的自回归语言模型,专注于英文学术基准测试。该模型在训练过程中使用了高达5万亿个token,展现出与同等规模的全开放模型相媲美或更优的性能,并在英语学术基准上与Meta和Mistral的开放权重模型竞争。OLMo 2 13B的发布包括所有代码、检查点、日志和相关的训练细节,旨在推动语言模型的科学研究。
高性能英文对话生成模型
OLMo-2-1124-7B-Instruct是由Allen人工智能研究所开发的一个大型语言模型,专注于对话生成任务。该模型在多种任务上进行了优化,包括数学问题解答、GSM8K、IFEval等,并在Tülu 3数据集上进行了监督微调。它是基于Transformers库构建的,可以用于研究和教育目的。该模型的主要优点包括高性能、多任务适应性和开源性,使其成为自然语言处理领域的一个重要工具。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
高性能AI模型,提升推理任务能力
Skywork-o1-Open-PRM-Qwen-2.5-7B是由昆仑科技Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。这个模型系列不仅在输出中展现出天生的思考、规划和反思能力,而且在标准基准测试中显示出推理技能的显著提升。它代表了AI能力的战略进步,将一个原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
科学文献综合检索增强型语言模型
Ai2 OpenScholar是由艾伦人工智能研究所与华盛顿大学合作开发的检索增强型语言模型,旨在帮助科学家通过检索相关文献并基于这些文献生成回答来有效导航和综合科学文献。该模型在多个科学领域中表现出色,特别是在引用准确性和事实性方面。它代表了人工智能在科学研究中应用的重要进步,能够加速科学发现并提高研究效率。
先进的指令遵循模型,提供全面后训练技术指南。
Llama-3.1-Tulu-3-8B-RM是Tülu3模型家族的一部分,该家族以开源数据、代码和配方为特色,旨在为现代后训练技术提供全面指南。该模型专为聊天以外的多样化任务(如MATH、GSM8K和IFEval)提供最先进的性能。
一个用于GUI视觉代理的视觉-语言-行动模型。
ShowUI是一个轻量级的视觉-语言-行动模型,专为GUI代理设计。它通过结合视觉输入、语言理解和行动预测,使得计算机界面能够以更自然的方式响应用户的指令。ShowUI的重要性在于它能够提高人机交互的效率和自然性,特别是在图形用户界面自动化和自然语言处理领域。该模型由showlab实验室开发,目前已在huggingface平台发布,供研究和应用。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
© 2024 AIbase 备案号:闽ICP备08105208号-14