浏览量:59
最新流量情况
月访问量
18.24k
平均访问时长
00:00:48
每次访问页数
1.99
跳出率
43.74%
流量来源
直接访问
37.11%
自然搜索
40.65%
邮件
0.10%
外链引荐
13.08%
社交媒体
8.25%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
法国
5.20%
英国
5.38%
印度
18.95%
美国
18.78%
越南
4.95%
构建和部署AI模型的机器学习框架
Cerebrium是一个机器学习框架,通过几行代码轻松训练、部署和监控机器学习模型。我们在无服务器的CPU/GPU上运行所有内容,并仅根据使用量收费。您可以从Pytorch、Huggingface、Tensorflow等库部署模型。
一个简单易用的语音克隆和语音模型训练工具。
EaseVoice Trainer 是一个后端项目,旨在简化和增强语音合成与转换训练过程。该项目基于 GPT-SoVITS 进行改进,注重用户体验和系统的可维护性。其设计理念不同于原始项目,旨在提供更模块化和定制化的解决方案,适用于从小规模实验到大规模生产的多种场景。该工具可以帮助开发者和研究人员更高效地进行语音合成和转换的研究与开发。
RWKV家族中最大的模型,采用MoE技术提升效率。
Flock of Finches 37B-A11B v0.1是RWKV家族的最新成员,这是一个实验性模型,拥有11亿个活跃参数,尽管仅训练了1090亿个token,但在常见基准测试中的得分与最近发布的Finch 14B模型大致相当。该模型采用了高效的稀疏混合专家(MoE)方法,在任何给定token上仅激活一部分参数,从而在训练和推理过程中节省时间和减少计算资源的使用。尽管这种架构选择以更高的VRAM使用为代价,但从我们的角度看,能够低成本训练和运行具有更大能力模型是非常值得的。
3D生成模型,实现高质量多样化的3D资产创建
TRELLIS是一个基于统一结构化潜在表示和修正流变换器的原生3D生成模型,能够实现多样化和高质量的3D资产创建。该模型通过整合稀疏的3D网格和从强大的视觉基础模型提取的密集多视图视觉特征,全面捕获结构(几何)和纹理(外观)信息,同时在解码过程中保持灵活性。TRELLIS模型能够处理高达20亿参数,并在包含50万个多样化对象的大型3D资产数据集上进行训练。该模型在文本或图像条件下生成高质量结果,显著超越现有方法,包括规模相似的最近方法。TRELLIS还展示了灵活的输出格式选择和局部3D编辑能力,这些是以前模型所没有提供的。代码、模型和数据将被发布。
一个可视化的AI工作流构建平台
Playnode是一个基于网页的AI工作流构建平台,它允许用户通过拖拽的方式创建和部署AI模型,支持多种AI模型和数据流的组合,以实现复杂的数据处理和分析任务。该平台的主要优点是其可视化操作界面,使得即使是非技术用户也能轻松上手,快速构建和部署AI工作流。Playnode的背景信息显示,它旨在降低AI技术的门槛,让更多人能够利用AI技术解决实际问题。目前,Playnode提供免费试用,用户可以开始免费使用并获得每周20个积分,无需信用卡信息。
ZML,高效灵活的编程模型框架。
ZML是一个编程模型框架,它允许用户通过简单的代码来构建和部署复杂的机器学习模型。它支持多种编程语言和平台,使得从原型设计到生产部署的过程更加高效。ZML的主要优点包括其简洁的API设计、强大的模型部署能力以及对多种硬件平台的支持。ZML适合需要快速开发和部署机器学习模型的开发者和数据科学家。
简洁的FLUX LoRA训练UI,支持低VRAM配置。
Flux Gym是一个为FLUX LoRA模型训练设计的简洁Web UI,特别适合只有12GB、16GB或20GB VRAM的设备使用。它结合了AI-Toolkit项目的易用性和Kohya Scripts的灵活性,使得用户无需复杂的终端操作即可进行模型训练。Flux Gym支持用户通过简单的界面上传图片和添加描述,然后启动训练过程。
AI脚本集合,主要用于Stable Diffusion模型。
ai-toolkit是一个研究性质的GitHub仓库,由Ostris创建,主要用于Stable Diffusion模型的实验和训练。它包含了各种AI脚本,支持模型训练、图像生成、LoRA提取器等。该工具包仍在开发中,可能存在不稳定性,但提供了丰富的功能和高度的自定义性。
轻量级、先进的开放文本生成模型
Gemma-2-27b是由Google开发的一系列轻量级、先进的开放文本生成模型,基于与Gemini模型相同的研究和技术构建。这些模型专为文本生成任务设计,如问答、摘要和推理。它们相对较小的体积使得即使在资源有限的环境中,如笔记本电脑、桌面或个人云基础设施上也能部署,使先进的AI模型更易于访问,并促进创新。
无需编码,自动训练、评估和部署先进的机器学习模型。
AutoTrain是Hugging Face生态系统中的一个自动化机器学习(AutoML)工具,它允许用户通过上传数据来训练定制的机器学习模型,而无需编写代码。该工具自动寻找最适合数据的模型,并快速部署。它支持多种机器学习任务,包括文本分类、图像分类、问答、翻译等,并且支持所有Hugging Face Hub上的语言。用户的数据在服务器上保持私密,并通过加密保护数据传输。根据用户选择的硬件,按分钟计费。
致力于收录开源社区的phi3训练变体版本,整理训练、推理、部署教程。
phi3-Chinese是一个公共的GitHub仓库,专注于收集和整理开源社区中关于phi3模型的各种训练变体版本。它不仅提供了不同版本的phi3模型下载链接,还包含了训练、推理、部署的相关教程,旨在帮助开发者更好地理解和使用phi3模型。
生成合成数据,训练和对齐模型的工具
DataDreamer是一个强大的开源Python库,用于提示、生成合成数据和训练工作流。它旨在简单易用,极其高效,且具有研究级质量。DataDreamer支持创建提示工作流、生成合成数据集、对齐模型、微调模型、指令调优模型和模型蒸馏。它具有简单、研究级、高效、可复现的特点,并简化了数据集和模型的共享。
机器学习模型运行和部署的工具
Replicate是一款机器学习模型运行和部署的工具,无需自行配置环境,可以快速运行和部署机器学习模型。Replicate提供了Python库和API接口,支持运行和查询模型。社区共享了成千上万个可用的机器学习模型,涵盖了文本理解、视频编辑、图像处理等多个领域。使用Replicate和相关工具,您可以快速构建自己的项目并进行部署。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
一站式无代码计算机视觉平台
navan.ai是一款无代码计算机视觉平台,帮助企业、开发者和学生快速构建和训练计算机视觉模型。无需编写代码,只需上传图片即可在几分钟内构建和训练模型。用户可以在nStudio中快速测试模型性能,并通过下载模型文件或使用API部署模型。navan.ai注重数据隐私,用户可以使用自己的数据进行模型训练,无需与平台共享数据。未来,用户还可以在navan.ai上将自己的计算机视觉模型进行商业化,为其他开发者提供使用,并从中获得收益。
简化机器学习云服务
Deploifai是一种管理机器学习项目云端的工具,让您可以专注于解决方案。它提供简化的云服务,帮助您管理和部署机器学习模型,包括数据集管理、模型训练、部署和监控。Deploifai的优势在于简化了复杂的基础设施设置,提供易于使用的界面和工具,以及高度可扩展的计算和存储资源。价格根据使用量和功能等级而定,适用于个人开发者和企业团队。
构建计算机视觉应用的全方位AI视觉平台
Datature是一个全方位的AI视觉平台,帮助团队和企业快速构建计算机视觉应用,无需编码。它提供了管理数据集、标注、训练和部署的功能。Datature的主要功能包括数据集管理、数据标注工具、模型训练、模型部署等。其优势在于提供了一站式解决方案,让团队和企业能够高效地开发和部署计算机视觉应用。定价方面,请访问官方网站获取详细信息。
让您的软件具备图像和视频中物体识别能力
Roboflow是一个用于构建和部署计算机视觉模型的综合平台。它被超过25万名工程师使用,用于创建数据集、训练模型和部署到生产环境。Roboflow使您只需几十个示例图像,即可在不到24小时内训练一个工作的最新计算机视觉模型。它提供了数据集管理、标注工具、模型训练、模型部署等一系列功能,并支持与各种环境和工具的集成。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
通过生成推理扩大过程奖励模型的测试时间计算。
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。这项技术能够在处理复杂任务时提供更准确的奖励评估,适用于多种机器学习和人工智能领域的应用。其主要优点是能够在资源有限的情况下优化模型性能,并在实际应用中降低计算成本。
昆仑万维开源的高性能数学代码推理模型,性能卓越
Skywork-OR1是由昆仑万维天工团队开发的高性能数学代码推理模型。该模型系列在同等参数规模下实现了业界领先的推理性能,突破了大模型在逻辑理解与复杂任务求解方面的能力瓶颈。Skywork-OR1系列包括Skywork-OR1-Math-7B、Skywork-OR1-7B-Preview和Skywork-OR1-32B-Preview三款模型,分别聚焦数学推理、通用推理和高性能推理任务。此次开源不仅涵盖模型权重,还全面开放了训练数据集和完整训练代码,所有资源均已上传至GitHub和Huggingface平台,为AI社区提供了完全可复现的实践参考。这种全方位的开源策略有助于推动整个AI社区在推理能力研究上的共同进步。
Pusa 是一个新颖的视频扩散模型,支持多种视频生成任务。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。
Dream 7B 是最强大的开放扩散大语言模型。
Dream 7B 是由香港大学 NLP 组和华为诺亚方舟实验室联合推出的最新扩散大语言模型。它在文本生成领域展现了优异的性能,特别是在复杂推理、长期规划和上下文连贯性等方面。该模型采用了先进的训练方法,具有强大的计划能力和灵活的推理能力,为各类 AI 应用提供了更为强大的支持。
一个针对机器学习优化的多模态 OCR 管道。
该产品是一个专门设计的 OCR 系统,旨在从复杂的教育材料中提取结构化数据,支持多语言文本、数学公式、表格和图表,能够生成适用于机器学习训练的高质量数据集。该系统利用多种技术和 API,能够提供高精度的提取结果,适合学术研究和教育工作者使用。
一款为 AI/ML 模型监控和管理而设计的工具。
Arthur Engine 是一个旨在监控和治理 AI/ML 工作负载的工具,利用流行的开源技术和框架。该产品的企业版提供更好的性能和额外功能,如自定义的企业级防护机制和指标,旨在最大化 AI 对组织的潜力。它能够有效评估和优化模型,确保数据安全与合规。
一个强大的文本生成模型,适用于多种对话应用。
DeepSeek-V3-0324 是一个先进的文本生成模型,具有 685 亿参数,采用 BF16 和 F32 张量类型,能够支持高效的推理和文本生成。该模型的主要优点在于其强大的生成能力和开放源码的特性,使其可以被广泛应用于多种自然语言处理任务。该模型的定位是为开发者和研究人员提供一个强大的工具,帮助他们在文本生成领域取得突破。
© 2025 AIbase 备案号:闽ICP备08105208号-14