需求人群:
"该产品适合开发者、研究人员和对语音技术感兴趣的用户。EaseVoice Trainer 提供了简单易用的界面和功能,能够帮助用户快速上手语音合成与转换项目,适合于教育和研究等多个领域。"
使用场景示例:
教育机构使用该工具进行语音合成课程的教学与研究。
开发者利用 EaseVoice Trainer 为应用程序添加语音交互功能。
研究人员使用该工具进行语音模型的优化与评估。
产品特色:
用户友好的设计:简化的工作流和直观的配置,易于部署和管理。
稳定性:在克隆与训练过程中提供一致且可靠的表现。
训练可观测性:提供监控工具,清晰展示克隆与模型训练进度及性能指标。
清晰的架构:前后端分离,提高模块化和可维护性。
RESTful API:方便与其他服务和应用程序集成。
可扩展性:适用于小规模实验和大规模生产。
集成 Tensorboard:用于实时监控和可视化训练进度。
使用教程:
确保安装 Python 3.9 或更高版本及 uv。
下载预训练模型并放入 models 目录。
使用命令行进入项目目录,执行 'uv run' 启动服务器。
如果使用 Docker,首先构建 Docker 镜像。
运行 Docker 容器,并访问 http://localhost:8000 进行操作。
浏览量:104
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
一个简单易用的语音克隆和语音模型训练工具。
EaseVoice Trainer 是一个后端项目,旨在简化和增强语音合成与转换训练过程。该项目基于 GPT-SoVITS 进行改进,注重用户体验和系统的可维护性。其设计理念不同于原始项目,旨在提供更模块化和定制化的解决方案,适用于从小规模实验到大规模生产的多种场景。该工具可以帮助开发者和研究人员更高效地进行语音合成和转换的研究与开发。
高效、多语种的语音合成模型
CosyVoice语音生成大模型2.0-0.5B是一个高性能的语音合成模型,支持零样本、跨语言的语音合成,能够根据文本内容直接生成相应的语音输出。该模型由通义实验室提供,具有强大的语音合成能力和广泛的应用场景,包括但不限于智能助手、有声读物、虚拟主播等。模型的重要性在于其能够提供自然、流畅的语音输出,极大地丰富了人机交互的体验。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
生成合成数据,训练和对齐模型的工具
DataDreamer是一个强大的开源Python库,用于提示、生成合成数据和训练工作流。它旨在简单易用,极其高效,且具有研究级质量。DataDreamer支持创建提示工作流、生成合成数据集、对齐模型、微调模型、指令调优模型和模型蒸馏。它具有简单、研究级、高效、可复现的特点,并简化了数据集和模型的共享。
提供多种预训练模型,支持多维度筛选,助力AI模型应用与开发。
该平台是一个专注于AI预训练模型的资源平台,整合了大量不同类型、规模和应用场景的预训练模型。其重要性在于为AI开发者和研究人员提供了便捷的模型获取渠道,降低了模型开发的门槛。主要优点包括模型分类细致、多维度筛选功能强大、信息展示详细且提供智能推荐。产品背景是随着AI技术的发展,对预训练模型的需求日益增长,平台应运而生。平台主要定位为AI模型资源平台,部分模型免费商用,部分可能需要付费,具体价格因模型而异。
人级别文本转语音合成模型
StyleTTS 2 是一款文本转语音(TTS)模型,使用大型语音语言模型(SLMs)进行风格扩散和对抗训练,实现了人级别的 TTS 合成。它通过扩散模型将风格建模为潜在随机变量,以生成最适合文本的风格,而无需参考语音。此外,我们使用大型预训练的 SLMs(如 WavLM)作为判别器,并结合我们的创新可微持续时间建模进行端到端训练,从而提高了语音的自然度。StyleTTS 2 在单说话人 LJSpeech 数据集上超越了人类录音,并在多说话人 VCTK 数据集上与之匹配,得到了母语为英语的评审人员的认可。此外,当在 LibriTTS 数据集上进行训练时,我们的模型优于先前公开可用的零样本扩展模型。通过展示风格扩散和对抗训练与大型 SLMs 的潜力,这项工作在单个和多说话人数据集上实现了一个人级别的 TTS 合成。
亚马逊的大规模语音合成模型
BASE TTS是亚马逊开发的大规模文本到语音合成模型,运用了10亿参数的自动回归转换器,可将文本转换成语音代码,再通过卷积解码器生成语音波形。该模型使用了超过10万小时的公共语音数据进行训练,实现了语音自然度的新状态。还具有音素解离和压缩等新颖的语音编码技术。随着模型规模的增大,BASE TTS展现出了处理复杂句子的自然语调能力。
支持多种语音识别和语音合成功能的开源项目
sherpa-onnx 是一个基于下一代 Kaldi 的语音识别和语音合成项目,使用onnxruntime进行推理,支持多种语音相关功能,包括语音转文字(ASR)、文字转语音(TTS)、说话人识别、说话人验证、语言识别、关键词检测等。它支持多种平台和操作系统,包括嵌入式系统、Android、iOS、Raspberry Pi、RISC-V、服务器等。
LLaSA: 扩展基于 LLaMA 的语音合成的训练时间和测试时间计算量
LLaSA_training 是一个基于 LLaMA 的语音合成训练项目,旨在通过优化训练时间和推理时间的计算资源,提升语音合成模型的效率和性能。该项目利用开源数据集和内部数据集进行训练,支持多种配置和训练方式,具有较高的灵活性和可扩展性。其主要优点包括高效的数据处理能力、强大的语音合成效果以及对多种语言的支持。该项目适用于需要高性能语音合成解决方案的研究人员和开发者,可用于开发智能语音助手、语音播报系统等应用场景。
提供语音识别、语音合成等语音AI能力
依图语音开放平台为开发者提供语音识别、语音合成等语音AI能力,包括精准语音转文本、文本转语音合成、声纹识别、语音增强降噪等服务,支持不同场景下的语音交互应用开发。平台提供高效、灵活的语音AI能力接入方式,可轻松将语音技术应用于各类产品与业务场景。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
多语言大型语音生成模型,提供全栈推理、训练和部署能力。
CosyVoice 是一个多语言的大型语音生成模型,它不仅支持多种语言的语音生成,还提供了从推理到训练再到部署的全栈能力。该模型在语音合成领域具有重要性,因为它能够生成自然流畅、接近真人的语音,适用于多种语言环境。CosyVoice 的背景信息显示,它是由 FunAudioLLM 团队开发,使用了 Apache-2.0 许可证。
一个高效的语音合成模型,支持中英文及语音克隆。
MegaTTS 3 是由字节跳动开发的一款基于 PyTorch 的高效语音合成模型,具有超高质量的语音克隆能力。其轻量级架构只包含 0.45B 参数,支持中英文及代码切换,能够根据输入文本生成自然流畅的语音,广泛应用于学术研究和技术开发。
简化机器学习模型的训练和部署
Sagify是一个命令行工具,可以在几个简单步骤中训练和部署机器学习/深度学习模型在AWS SageMaker上!它消除了配置云实例进行模型训练的痛苦,简化了在云上运行超参数作业的过程,同时不再需要将模型交给软件工程师进行部署。Sagify提供了丰富的功能,包括AWS账户配置、Docker镜像构建、数据上传、模型训练、模型部署等。它适用于各种使用场景,帮助用户快速构建和部署机器学习模型。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
构建和部署AI模型的机器学习框架
Cerebrium是一个机器学习框架,通过几行代码轻松训练、部署和监控机器学习模型。我们在无服务器的CPU/GPU上运行所有内容,并仅根据使用量收费。您可以从Pytorch、Huggingface、Tensorflow等库部署模型。
使用自得语音技术,创造属于你的角色
自得语音技术可通过简单的步骤创造出属于你的角色。类似GPT,可生成与真人无异的语音片段,在情感、音色和语速等方面与真人一致。自得语音支持快速定制角色,只需要上传一段语音即可立即生成属于你的语音角色。无需下载软件,可在浏览器上完成语音生成。同时提供API接口,方便开发者集成到自己的产品中。商用用户可享受7x24小时的技术支持。
使用Llama模型的语音合成工具
Llama 3.2 3b Voice 是基于Hugging Face平台的一款语音合成模型,能够将文本转换为自然流畅的语音。该模型采用了先进的深度学习技术,能够模仿人类说话的语调、节奏和情感,适用于多种场景,如语音助手、有声读物、自动播报等。
轻松创建你自己的机器学习模型
Teachable Machine是一个基于网页的工具,使用户可以快速轻松地创建机器学习模型,无需专业知识或编码能力。用户只需收集并整理样本数据,Teachable Machine将自动训练模型,然后用户可以测试模型准确性,最后将模型导出使用。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
在线语音合成与语音识别服务
TTSLabs是一款在线语音合成与语音识别服务,提供高质量、自然流畅的语音合成和准确可靠的语音识别功能。通过简单的API调用,用户可以将文字转化为真实的语音,并且可以将语音转化为文本。TTSLabs提供多种语音风格和多国语言的支持,具有快速响应、高效稳定的特点。价格灵活透明,适用于个人开发者和企业用户。
机器学习模型运行和部署的工具
Replicate是一款机器学习模型运行和部署的工具,无需自行配置环境,可以快速运行和部署机器学习模型。Replicate提供了Python库和API接口,支持运行和查询模型。社区共享了成千上万个可用的机器学习模型,涵盖了文本理解、视频编辑、图像处理等多个领域。使用Replicate和相关工具,您可以快速构建自己的项目并进行部署。
为AI聊天机器人添加自然语言的语音合成功能
Summme是一个插件,为您喜欢的AI聊天机器人添加自然语言的语音合成功能。它支持ChatGPT、Bard、Bing Chat、Claude.ai等多个聊天机器人平台。您可以自动或手动将聊天机器人的回复转换为语音,享受更加自然的语音交流体验。Summme提供多种语音音调和语言选择,支持调节语速,还可以根据您的名字进行个性化问候。完全免费且无需注册。尝试Summme,为您的聊天机器人增添声音。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
无需编码,自动训练、评估和部署先进的机器学习模型。
AutoTrain是Hugging Face生态系统中的一个自动化机器学习(AutoML)工具,它允许用户通过上传数据来训练定制的机器学习模型,而无需编写代码。该工具自动寻找最适合数据的模型,并快速部署。它支持多种机器学习任务,包括文本分类、图像分类、问答、翻译等,并且支持所有Hugging Face Hub上的语言。用户的数据在服务器上保持私密,并通过加密保护数据传输。根据用户选择的硬件,按分钟计费。
情感驱动的多语音合成引擎
EmotiVoice是一个功能强大、现代化的开源文本到语音引擎。它支持英语和中文,并拥有超过2000种不同的语音。最显著的特点是情感合成,可以让你创造具有各种情感的语音,包括快乐、兴奋、悲伤、愤怒等。 EmotiVoice提供了一个易于使用的网页界面,还提供了用于批量生成结果的脚本界面。 主要功能点包括: 1. 支持英语和中文 2. 拥有超过2000种不同的语音 3. 提供情感合成功能 价格:免费 定位:面向开发者和研究人员。
让应用通过语音与文本的转换实现智能交互。
Azure 认知服务语音是微软推出的一款语音识别与合成服务,支持超过100种语言和方言的语音转文本和文本转语音功能。它通过创建可处理特定术语、背景噪音和重音的自定义语音模型,提高听录的准确度。此外,该服务还支持实时语音转文本、语音翻译、文本转语音等功能,适用于多种商业场景,如字幕生成、通话后听录分析、视频翻译等。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
© 2025 AIbase 备案号:闽ICP备08105208号-14