需求人群:
"VideoGrain 适合需要对视频进行精细编辑的专业人士,如影视后期制作人员、广告创意人员、视频内容创作者等。它能够帮助他们快速实现复杂的视频编辑需求,节省时间和成本,同时提高编辑的准确性和艺术效果。"
使用场景示例:
将视频中的人类角色替换为蜘蛛侠、钢铁侠等超级英雄。
对视频中的动物实例进行编辑,如将熊猫替换为玩具贵宾犬。
对视频中的物体部件进行修改,如将人物的服装颜色从灰色改为蓝色。
产品特色:
支持类别级、实例级和部件级的视频编辑
通过增强文本到区域的控制实现精准编辑
通过调节自注意力和交叉注意力实现特征分离
零样本编辑能力,无需额外训练数据
适用于多种视频内容和场景的灵活编辑
支持与 SAM-Track 等技术结合,实现更精准的编辑
提供多种实验结果和对比,验证其优越性
开源代码和数据,便于研究和应用扩展
使用教程:
1. 访问项目页面并下载开源代码和相关数据。
2. 准备需要编辑的视频和对应的文本提示。
3. 使用 VideoGrain 模型加载视频和文本提示。
4. 根据需要选择编辑级别(类别级、实例级或部件级)。
5. 调整时空注意力机制以实现精准编辑。
6. 运行模型并生成编辑后的视频。
7. 检查编辑结果并进行必要的调整。
8. 将编辑后的视频导出并应用于实际项目。
浏览量:46
VideoGrain 是一种零样本方法,用于实现类别级、实例级和部件级的视频编辑。
VideoGrain 是一种基于扩散模型的视频编辑技术,通过调节时空注意力机制实现多粒度视频编辑。该技术解决了传统方法中语义对齐和特征耦合的问题,能够对视频内容进行精细控制。其主要优点包括零样本编辑能力、高效的文本到区域控制以及特征分离能力。该技术适用于需要对视频进行复杂编辑的场景,如影视后期、广告制作等,能够显著提升编辑效率和质量。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
通过扩散模型实现单目视频的相机轨迹重定向。
TrajectoryCrafter 是一种先进的相机轨迹重定向工具,利用扩散模型技术,将单目视频中的相机运动重新设计,提升视频的表现力和视觉吸引力。该技术可广泛应用于影视制作和虚拟现实等领域,具备高效、便捷和创新的特点,旨在为用户提供更多创意自由和控制能力。
X-Dyna是一种基于扩散模型的零样本人类图像动画生成技术。
X-Dyna是一种创新的零样本人类图像动画生成技术,通过将驱动视频中的面部表情和身体动作迁移到单张人类图像上,生成逼真且富有表现力的动态效果。该技术基于扩散模型,通过Dynamics-Adapter模块,将参考外观上下文有效整合到扩散模型的空间注意力中,同时保留运动模块合成流畅复杂动态细节的能力。它不仅能够实现身体姿态控制,还能通过本地控制模块捕捉与身份无关的面部表情,实现精确的表情传递。X-Dyna在多种人类和场景视频的混合数据上进行训练,能够学习物理人体运动和自然场景动态,生成高度逼真和富有表现力的动画。
一种用于零样本定制图像生成的扩散自蒸馏技术
Diffusion Self-Distillation是一种基于扩散模型的自蒸馏技术,用于零样本定制图像生成。该技术允许艺术家和用户在没有大量配对数据的情况下,通过预训练的文本到图像的模型生成自己的数据集,进而微调模型以实现文本和图像条件的图像到图像任务。这种方法在保持身份生成任务的性能上超越了现有的零样本方法,并能与每个实例的调优技术相媲美,无需测试时优化。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
利用预训练的图像到视频扩散模型生成连贯中间帧
该产品是一个图像到视频的扩散模型,通过轻量级的微调技术,能够从一对关键帧生成具有连贯运动的连续视频序列。这种方法特别适用于需要在两个静态图像之间生成平滑过渡动画的场景,如动画制作、视频编辑等。它利用了大规模图像到视频扩散模型的强大能力,通过微调使其能够预测两个关键帧之间的视频,从而实现前向和后向的一致性。
视频编辑中的手-物交互意识
HOI-Swap是一个基于扩散模型的视频编辑框架,专注于处理视频编辑中手与物体交互的复杂性。该模型通过自监督训练,能够在单帧中实现物体交换,并学习根据物体属性变化调整手的交互模式,如手的抓握方式。第二阶段将单帧编辑扩展到整个视频序列,通过运动对齐和视频生成,实现高质量的视频编辑。
一种基于图像到视频扩散模型的视频编辑技术
I2VEdit是一种创新的视频编辑技术,通过预训练的图像到视频模型,将单一帧的编辑扩展到整个视频。这项技术能够适应性地保持源视频的视觉和运动完整性,并有效处理全局编辑、局部编辑以及适度的形状变化,这是现有方法所不能实现的。I2VEdit的核心包括两个主要过程:粗略运动提取和外观细化,通过粗粒度注意力匹配进行精确调整。此外,还引入了跳过间隔策略,以减轻多个视频片段自动回归生成过程中的质量下降。实验结果表明,I2VEdit在细粒度视频编辑方面的优越性能,证明了其能够产生高质量、时间一致的输出。
Dream 7B 是最强大的开放扩散大语言模型。
Dream 7B 是由香港大学 NLP 组和华为诺亚方舟实验室联合推出的最新扩散大语言模型。它在文本生成领域展现了优异的性能,特别是在复杂推理、长期规划和上下文连贯性等方面。该模型采用了先进的训练方法,具有强大的计划能力和灵活的推理能力,为各类 AI 应用提供了更为强大的支持。
加速视频扩散模型,生成速度提升 8.5 倍。
AccVideo 是一种新颖的高效蒸馏方法,通过合成数据集加速视频扩散模型的推理速度。该模型能够在生成视频时实现 8.5 倍的速度提升,同时保持相似的性能。它使用预训练的视频扩散模型生成多条有效去噪轨迹,从而优化了数据的使用和生成过程。AccVideo 特别适用于需要高效视频生成的场景,如电影制作、游戏开发等,适合研究人员和开发者使用。
实现灵活且高保真度的图像生成,同时保持身份特征。
InfiniteYou(InfU)是一个基于扩散变换器的强大框架,旨在实现灵活的图像重构,并保持用户身份。它通过引入身份特征并采用多阶段训练策略,显著提升了图像生成的质量和美学,同时改善了文本与图像的对齐。该技术对提高图像生成的相似性和美观性具有重要意义,适用于各种图像生成任务。
VACE 是一款集视频创作与编辑于一体的人工智能模型。
VACE(Video All-in-One Creation and Editing)是由 Tongyi Lab 团队开发的一款多功能视频创作与编辑模型。它通过单一模型提供视频生成和编辑的解决方案,能够有效简化用户的工作流程,释放无限创意。VACE 的技术核心在于其强大的多模态生成能力,能够实现如物体移动、替换、参考、扩展、动画化等多种功能,为视频创作带来了前所未有的灵活性和高效性。VACE 的出现填补了视频创作领域中全功能一体化模型的空白,为视频创作者、广告制作团队、影视后期人员等提供了强大的工具支持,有望推动视频内容创作行业的技术革新。
VideoPainter 是一款支持任意长度视频修复和编辑的工具,采用文本引导的插件式框架。
VideoPainter 是一款基于深度学习的视频修复和编辑工具,采用预训练的扩散变换器模型,结合轻量级背景上下文编码器和 ID 重采样技术,能够实现高质量的视频修复和编辑。该技术的重要性在于它突破了传统视频修复方法在长度和复杂度上的限制,为视频创作者提供了一种高效、灵活的工具。产品目前处于研究阶段,暂未明确价格,主要面向视频编辑领域的专业用户和研究人员。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
Project Starlight 是一款基于 AI 的视频增强工具,可将低分辨率和损坏的视频提升为高清质量。
Project Starlight 是 Topaz Labs 推出的一款 AI 视频增强模型,专为提升低分辨率和损坏视频的质量而设计。它采用了扩散模型技术,能够实现视频的超分辨率、降噪、去模糊和锐化等功能,同时保持时间一致性,确保视频帧之间的流畅过渡。该技术是视频增强领域的重大突破,为视频修复和提升带来了前所未有的高质量效果。目前,Project Starlight 提供免费试用,并计划在未来支持 4K 导出,主要面向需要高质量视频修复和增强的用户和企业。
Level-Navi Agent是一个无需训练即可使用的框架,利用大语言模型进行深度查询理解和精准搜索。
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
Mercury Coder 是一款基于扩散模型的高性能代码生成语言模型。
Mercury Coder 是 Inception Labs 推出的首款商用级扩散大语言模型(dLLM),专为代码生成优化。该模型采用扩散模型技术,通过‘粗到细’的生成方式,显著提升生成速度和质量。其速度比传统自回归语言模型快 5-10 倍,能够在 NVIDIA H100 硬件上达到每秒 1000 多个 token 的生成速度,同时保持高质量的代码生成能力。该技术的背景是当前自回归语言模型在生成速度和推理成本上的瓶颈,而 Mercury Coder 通过算法优化突破了这一限制,为企业级应用提供了更高效、低成本的解决方案。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
ToVideo 是一个将图片转换为视频的在线工具,提供免费的 AI 功能和无缝编辑体验。
ToVideo 是一款专注于将图片转换为视频的在线工具。它利用 AI 技术,为用户提供快速、便捷的图片转视频解决方案。用户可以通过简单的操作,将静态图片转化为具有动态效果、过渡动画和背景音乐的视频。该工具的主要优点包括操作简单、支持免费使用、提供高质量的 MP4 视频下载,且无水印。它适用于个人、教育、商业等多种场景,帮助用户快速制作出适合社交媒体、广告宣传或个人展示的视频内容。ToVideo 提供免费版本,同时也有付费的高级功能,以满足不同用户的需求。
MakeAnything 是一个用于多领域程序化序列生成的扩散变换器模型。
MakeAnything 是一个基于扩散变换器的模型,专注于多领域程序化序列生成。该技术通过结合先进的扩散模型和变换器架构,能够生成高质量的、逐步的创作序列,如绘画、雕塑、图标设计等。其主要优点在于能够处理多种领域的生成任务,并且可以通过少量样本快速适应新领域。该模型由新加坡国立大学 Show Lab 团队开发,目前以开源形式提供,旨在推动多领域生成技术的发展。
Light-A-Video 是一种无需训练的视频重光照技术,通过渐进式光照融合实现平滑的视频重光照效果。
Light-A-Video 是一种创新的视频重光照技术,旨在解决传统视频重光照中存在的光照不一致和闪烁问题。该技术通过 Consistent Light Attention(CLA)模块和 Progressive Light Fusion(PLF)策略,增强了视频帧之间的光照一致性,同时保持了高质量的图像效果。该技术无需额外训练,可以直接应用于现有的视频内容,具有高效性和实用性。它适用于视频编辑、影视制作等领域,能够显著提升视频的视觉效果。
Pippo 是一个从单张照片生成高分辨率多人视角视频的生成模型。
Pippo 是由 Meta Reality Labs 和多所高校合作开发的生成模型,能够从单张普通照片生成高分辨率的多人视角视频。该技术的核心优势在于无需额外输入(如参数化模型或相机参数),即可生成高质量的 1K 分辨率视频。它基于多视角扩散变换器架构,具有广泛的应用前景,如虚拟现实、影视制作等。Pippo 的代码已开源,但不包含预训练权重,用户需要自行训练模型。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
强大的视频替换与编辑软件,利用AI技术实现自然效果。
VisoMaster是一款专注于视频替换和编辑的桌面客户端软件。它利用先进的AI技术,能够在图像和视频中实现高质量的替换,效果自然逼真。该软件操作简单,支持多种输入输出格式,并通过GPU加速提高处理效率。VisoMaster的主要优点是易于使用、高效处理以及高度定制化,适合视频创作者、影视后期制作人员以及对视频编辑有需求的普通用户。软件目前免费提供给用户,旨在帮助用户快速生成高质量的视频内容。
DiffSplat 是一个从文本提示和单视图图像生成 3D 高斯点云的生成框架。
DiffSplat 是一种创新的 3D 生成技术,能够从文本提示和单视图图像快速生成 3D 高斯点云。该技术通过利用大规模预训练的文本到图像扩散模型,实现了高效的 3D 内容生成。它解决了传统 3D 生成方法中数据集有限和无法有效利用 2D 预训练模型的问题,同时保持了 3D 一致性。DiffSplat 的主要优点包括高效的生成速度(1~2 秒内完成)、高质量的 3D 输出以及对多种输入条件的支持。该模型在学术研究和工业应用中具有广泛前景,尤其是在需要快速生成高质量 3D 模型的场景中。
一种用于控制视频扩散模型运动模式的高效方法,支持运动模式的自定义和迁移。
Go with the Flow 是一种创新的视频生成技术,通过使用扭曲噪声代替传统的高斯噪声,实现了对视频扩散模型运动模式的高效控制。该技术无需对原始模型架构进行修改,即可在不增加计算成本的情况下,实现对视频中物体和相机运动的精确控制。其主要优点包括高效性、灵活性和可扩展性,能够广泛应用于图像到视频生成、文本到视频生成等多种场景。该技术由 Netflix Eyeline Studios 等机构的研究人员开发,具有较高的学术价值和商业应用潜力,目前开源免费提供给公众使用。
© 2025 AIbase 备案号:闽ICP备08105208号-14