需求人群:
"目标受众为人工智能研究者、游戏开发者和多模态学习模型的开发者。ROCKET-1适合他们,因为它提供了一个先进的框架来研究和开发能够在复杂环境中进行具身决策的智能体,尤其是在需要空间理解和创造性任务解决能力的场景中。"
使用场景示例:
在Minecraft中,代理通过ROCKET-1成功地在特定位置放置了橡木门。
代理使用ROCKET-1在不触碰羊的情况下猎杀牛。
代理利用ROCKET-1在Minecraft中挖掘翡翠和煤矿。
产品特色:
• 视觉-时间上下文提示:利用过去和当前观察的对象分割来指导策略-环境交互。
• 因果变换器:处理交互类型、观察和对象分割,以预测动作。
• 实时对象跟踪:由SAM-2提供,增强模型的交互能力。
• 与高级推理器集成:GPT-4o模型和Molmo模型协同工作,将复杂任务分解为步骤。
• 零样本泛化能力评估:Minecraft交互基准测试设计用于评估模型的泛化能力。
• 多样化任务解决:在Minecraft中完成多种复杂和创造性的任务。
• 交互类型多样性:支持Minecraft中的六种交互类型,共计12个任务。
使用教程:
1. 访问ROCKET-1的GitHub页面以获取代码和文档。
2. 阅读并理解ROCKET-1的工作原理和视觉-时间上下文提示协议。
3. 根据文档指南设置开发环境,并安装必要的依赖。
4. 运行ROCKET-1模型,并在Minecraft环境中进行测试。
5. 使用Gradio平台与ROCKET-1进行交互,体验其决策制定能力。
6. 根据需要调整模型参数,优化模型性能。
7. 探索ROCKET-1在其他开放世界环境中的潜在应用。
浏览量:13
掌握开放世界交互的视觉-时间上下文提示模型
ROCKET-1是一个视觉-语言模型(VLMs),专门针对开放世界环境中的具身决策制定而设计。该模型通过视觉-时间上下文提示协议,将VLMs与策略模型之间的通信连接起来,利用来自过去和当前观察的对象分割来指导策略-环境交互。ROCKET-1通过这种方式,能够解锁VLMs的视觉-语言推理能力,使其能够解决复杂的创造性任务,尤其是在空间理解方面。ROCKET-1在Minecraft中的实验表明,该方法使代理能够完成以前无法实现的任务,突出了视觉-时间上下文提示在具身决策制定中的有效性。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
无需对齐信息的零样本文本到语音转换模型
MaskGCT是一个创新的零样本文本到语音转换(TTS)模型,它通过消除显式对齐信息和音素级持续时间预测的需求,解决了自回归和非自回归系统中存在的问题。MaskGCT采用两阶段模型:第一阶段使用文本预测从语音自监督学习(SSL)模型中提取的语义标记;第二阶段,模型根据这些语义标记预测声学标记。MaskGCT遵循掩码和预测的学习范式,在训练期间学习预测基于给定条件和提示的掩码语义或声学标记。在推理期间,模型以并行方式生成指定长度的标记。实验表明,MaskGCT在质量、相似性和可理解性方面超越了当前最先进的零样本TTS系统。
四足机器人室内移动操作系统
Helpful DoggyBot是一个四足机器人室内移动操作系统,它通过前端夹持装置进行物体操作,使用在模拟环境中训练的低级控制器实现敏捷技能,如攀爬和全身倾斜。此外,它还结合了预训练的视觉-语言模型(VLMs)进行语义理解和命令生成。该系统在没有实际数据收集或训练的情况下,能在未见过的环境中零样本泛化完成任务,如按照用户的指令在攀爬过后的床边取回随机放置的玩具,成功率达到60%。
高效自动语音识别模型
Whisper large-v3-turbo是OpenAI提出的一种先进的自动语音识别(ASR)和语音翻译模型。它在超过500万小时的标记数据上进行训练,能够在零样本设置中泛化到许多数据集和领域。该模型是Whisper large-v3的微调版本,解码层从32减少到4,以提高速度,但可能会略微降低质量。
在Minecraft中轻松创建完美圆形和椭圆形。
Minecraft Circle Generator是一个为Minecraft游戏环境设计的强有力工具,用于创建精确且易于操作的像素化圆形或椭圆形形状。用户可以输入特定的参数,如高度、宽度和样式(细、粗、填充),以生成所需的形状。这个工具支持创建任何大小和尺寸的圆形,允许根据个人需求进行定制。此外,生成的圆形可以以PNG或SVG格式下载,以进一步用于Minecraft项目。
零样本风格化情侣肖像创作
Omni-Zero-Couples是一个使用diffusers管道的零样本风格化情侣肖像创作模型。它利用深度学习技术,无需预先定义的风格样本,即可生成具有特定艺术风格的情侣肖像。这种技术在艺术创作、个性化礼物制作和数字娱乐领域具有广泛的应用前景。
音乐生成系统,支持多语言声乐生成和音乐编辑。
Seed-Music 是一个音乐生成系统,它通过统一的框架支持生成具有表现力的多语言声乐音乐,允许精确到音符级别的调整,并提供将用户自己的声音融入音乐创作的能力。该系统采用先进的语言模型和扩散模型,为音乐家提供多样化的创作工具,满足不同音乐制作需求。
零样本声音转换技术,实现音质与音色的高保真转换。
seed-vc 是一个基于 SEED-TTS 架构的声音转换模型,能够实现零样本的声音转换,即无需特定人的声音样本即可转换声音。该技术在音频质量和音色相似性方面表现出色,具有很高的研究和应用价值。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
大规模图像描述数据集,提供超过16M的合成图像描述。
PixelProse是一个由tomg-group-umd创建的大规模数据集,它利用先进的视觉-语言模型Gemini 1.0 Pro Vision生成了超过1600万个详细的图像描述。这个数据集对于开发和改进图像到文本的转换技术具有重要意义,可以用于图像描述生成、视觉问答等任务。
编码器自由的视觉-语言模型,高效且数据驱动。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
零样本图像编辑,一键模仿参考图像风格
MimicBrush是一种创新的图像编辑模型,它允许用户通过指定源图像中的编辑区域和提供一张野外参考图像来实现零样本图像编辑。该模型能够自动捕捉两者之间的语义对应关系,并一次性完成编辑。MimicBrush的开发基于扩散先验,通过自监督学习捕捉不同图像间的语义关系,实验证明其在多种测试案例下的有效性及优越性。
通过强化学习微调大型视觉-语言模型作为决策代理
RL4VLM是一个开源项目,旨在通过强化学习微调大型视觉-语言模型,使其成为能够做出决策的智能代理。该项目由Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine等研究人员共同开发。它基于LLaVA模型,并采用了PPO算法进行强化学习微调。RL4VLM项目提供了详细的代码库结构、入门指南、许可证信息以及如何引用该研究的说明。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
智能视频对象分割技术
SAM是一个先进的视频对象分割模型,它结合了光学流动和RGB信息,能够发现并分割视频中的移动对象。该模型在单对象和多对象基准测试中均取得了显著的性能提升,同时保持了对象的身份一致性。
开源的实时语音克隆技术
OpenVoice是一个开源的语音克隆技术,可以准确地克隆参考音色,生成多种语言和口音的语音。它可以灵活地控制语音风格,如情感、口音等参数,以及节奏、停顿和语调等。它实现了零样本跨语言语音克隆,即生成语音和参考语音的语言都不需要出现在训练数据中。
大型语言模型是视觉推理协调器
Cola是一种使用语言模型(LM)来聚合2个或更多视觉-语言模型(VLM)输出的方法。我们的模型组装方法被称为Cola(COordinative LAnguage model or visual reasoning)。Cola在LM微调(称为Cola-FT)时效果最好。Cola在零样本或少样本上下文学习(称为Cola-Zero)时也很有效。除了性能提升外,Cola还对VLM的错误更具鲁棒性。我们展示了Cola可以应用于各种VLM(包括大型多模态模型如InstructBLIP)和7个数据集(VQA v2、OK-VQA、A-OKVQA、e-SNLI-VE、VSR、CLEVR、GQA),并且它始终提高了性能。
© 2024 AIbase 备案号:闽ICP备08105208号-14