需求人群:
"目标受众为开发者、研究人员以及对自然语言处理和人机交互感兴趣的技术爱好者。ShowUI适合他们因为它提供了一个强大的工具来开发和研究基于视觉和语言的交互系统,可以应用于自动化测试、智能助手等多个领域。"
使用场景示例:
- 使用ShowUI模型自动化网页操作,如填写表单、点击按钮。
- 利用ShowUI进行图像识别和基于指令的界面导航。
- 将ShowUI集成到自定义的应用中,以提供更自然的用户体验。
产品特色:
- 视觉-语言-行动模型:结合视觉输入、语言理解和行动预测。
- GUI自动化:用于图形用户界面的自动化操作。
- 模型训练与部署:支持在huggingface平台进行模型训练和部署。
- 多模态输入:支持图像和文本的多模态输入。
- 行动预测:能够预测用户指令对应的界面操作。
- 界面操作:支持点击、输入、选择等多种界面操作。
- 模型微调:提供微调代码和指令,以适应特定应用场景。
使用教程:
1. 安装依赖:通过pip安装requirements.txt中列出的依赖。
2. 克隆仓库:使用git clone命令克隆ShowUI的代码仓库。
3. 启动界面:运行app.py启动ShowUI的图形界面。
4. 加载模型:使用Qwen2VLForConditionalGeneration类加载预训练的ShowUI模型。
5. 界面操作:通过发送包含系统提示、图像和查询的messages列表来执行界面操作。
6. 结果展示:通过draw_point函数在图像上标记操作结果,如点击位置。
7. 微调模型:根据需要对模型进行微调,以适应特定的应用场景。
浏览量:9
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
一个用于GUI视觉代理的视觉-语言-行动模型。
ShowUI是一个轻量级的视觉-语言-行动模型,专为GUI代理设计。它通过结合视觉输入、语言理解和行动预测,使得计算机界面能够以更自然的方式响应用户的指令。ShowUI的重要性在于它能够提高人机交互的效率和自然性,特别是在图形用户界面自动化和自然语言处理领域。该模型由showlab实验室开发,目前已在huggingface平台发布,供研究和应用。
多智能体任务规划与推理的基准测试
PARTNR是由Meta FAIR发布的一个大规模基准测试,包含100,000个自然语言任务,旨在研究多智能体推理和规划。PARTNR利用大型语言模型(LLMs)生成任务,并通过模拟循环来减少错误。它还支持与真实人类伙伴的AI代理评估,通过人类在环基础设施进行。PARTNR揭示了现有基于LLM的规划器在任务协调、跟踪和从错误中恢复方面的显著局限性,人类能解决93%的任务,而LLMs仅能解决30%。
沟通无界,让每次对话都创造价值。
心辰Lingo语音大模型是一款先进的人工智能语音模型,专注于提供高效、准确的语音识别和处理服务。它能够理解并处理自然语言,使得人机交互更加流畅和自然。该模型背后依托西湖心辰强大的AI技术,致力于在各种场景下提供高质量的语音交互体验。
实时语音交互的人工智能对话系统。
Listening-while-Speaking Language Model (LSLM)是一款旨在提升人机交互自然度的人工智能对话模型。它通过全双工建模(FDM)技术,实现了在说话时同时监听的能力,增强了实时交互性,尤其是在生成内容不满意时能够被打断和实时响应。LSLM采用了基于token的解码器仅TTS进行语音生成,以及流式自监督学习(SSL)编码器进行实时音频输入,通过三种融合策略(早期融合、中期融合和晚期融合)探索最佳交互平衡。
用于构建理解和模拟人类语音表情的声控人工智能接口。
Hume AI的同理心语音接口(EVI)是一种由同理心大型语言模型(eLLM)驱动的API,可以理解和模拟语音音调、词语重音等,从而优化人机交互。它基于10多年的研究成果、数百万专利数据点和30多篇发表在顶尖期刊的论文。EVI旨在为任何应用程序提供更自然、富有同情心的语音界面,让人与AI的互动更加人性化。该技术可广泛应用于销售/会议分析、健康与保健、AI研究服务、社交网络等领域。
AI学习电脑应用中的人类行为
rabbit是一个研究项目,旨在开发可以理解和模拟人类在计算机应用中的行为的系统。这个系统被称为大型行动模型(LAM),采用神经符号编程技术,允许直接模拟各种应用程序和用户在其上执行的操作。LAM在精确度、可解释性和速度方面与最先进的方法相媲美。它的目标是为各种AI助手和操作系统的部署提供支持,帮助塑造下一代自然语言驱动的消费者体验。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
先进的文本生成模型
OLMo-2-1124-13B-SFT是由Allen AI研究所开发的一个大型语言模型,经过在特定数据集上的监督微调,旨在提高在多种任务上的表现,包括聊天、数学问题解答、文本生成等。该模型基于Transformers库和PyTorch框架,支持英文,拥有Apache 2.0的开源许可证,适用于研究和教育用途。
10亿参数的英文文本和代码语言模型
INTELLECT-1-Instruct是一个由Prime Intellect训练的10亿参数语言模型,从零开始在1万亿个英文文本和代码token上进行训练。该模型支持文本生成,并且具有分布式训练的能力,能够在不可靠的、全球分布的工作者上进行高性能训练。它使用了DiLoCo算法进行训练,并利用自定义的int8 all-reduce内核来减少通信负载,显著降低了通信开销。这个模型的背景信息显示,它是由30个独立的社区贡献者提供计算支持,并在3个大洲的14个并发节点上进行训练。
先进的文本生成模型,支持多样化任务处理。
OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
高质量数据集,用于OLMo2训练的第二阶段。
DOLMino dataset mix for OLMo2 stage 2 annealing training是一个混合了多种高质数据的数据集,用于在OLMo2模型训练的第二阶段。这个数据集包含了网页页面、STEM论文、百科全书等多种类型的数据,旨在提升模型在文本生成任务中的表现。它的重要性在于为开发更智能、更准确的自然语言处理模型提供了丰富的训练资源。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
基于文本生成姿态并进一步生成图像的模型
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
一款经过优化的大型语言模型,擅长文本生成和对话。
OLMo-2-1124-13B-Instruct是由Allen AI研究所开发的一款大型语言模型,专注于文本生成和对话任务。该模型在多个任务上表现出色,包括数学问题解答、科学问题解答等。它是基于13B参数的版本,经过在特定数据集上的监督微调和强化学习训练,以提高其性能和安全性。作为一个开源模型,它允许研究人员和开发者探索和改进语言模型的科学。
高性能的英文学术基准语言模型
OLMo 2 13B是由Allen Institute for AI (Ai2)开发的一款基于Transformer的自回归语言模型,专注于英文学术基准测试。该模型在训练过程中使用了高达5万亿个token,展现出与同等规模的全开放模型相媲美或更优的性能,并在英语学术基准上与Meta和Mistral的开放权重模型竞争。OLMo 2 13B的发布包括所有代码、检查点、日志和相关的训练细节,旨在推动语言模型的科学研究。
高性能英文对话生成模型
OLMo-2-1124-7B-Instruct是由Allen人工智能研究所开发的一个大型语言模型,专注于对话生成任务。该模型在多种任务上进行了优化,包括数学问题解答、GSM8K、IFEval等,并在Tülu 3数据集上进行了监督微调。它是基于Transformers库构建的,可以用于研究和教育目的。该模型的主要优点包括高性能、多任务适应性和开源性,使其成为自然语言处理领域的一个重要工具。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
高性能AI模型,提升推理任务能力
Skywork-o1-Open-PRM-Qwen-2.5-7B是由昆仑科技Skywork团队开发的一系列模型,这些模型结合了o1风格的慢思考和推理能力。这个模型系列不仅在输出中展现出天生的思考、规划和反思能力,而且在标准基准测试中显示出推理技能的显著提升。它代表了AI能力的战略进步,将一个原本较弱的基础模型推向了推理任务的最新技术(SOTA)。
科学文献综合检索增强型语言模型
Ai2 OpenScholar是由艾伦人工智能研究所与华盛顿大学合作开发的检索增强型语言模型,旨在帮助科学家通过检索相关文献并基于这些文献生成回答来有效导航和综合科学文献。该模型在多个科学领域中表现出色,特别是在引用准确性和事实性方面。它代表了人工智能在科学研究中应用的重要进步,能够加速科学发现并提高研究效率。
先进的指令遵循模型,提供全面后训练技术指南。
Llama-3.1-Tulu-3-8B-RM是Tülu3模型家族的一部分,该家族以开源数据、代码和配方为特色,旨在为现代后训练技术提供全面指南。该模型专为聊天以外的多样化任务(如MATH、GSM8K和IFEval)提供最先进的性能。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
AI驱动的界面解决方案,引领智能新体验。
Ant Design X 是由Ant Design团队推出的AI界面解决方案,它基于RICH设计范式(角色、意图、会话和混合界面),延续Ant Design的设计语言,提供了全新的AGI混合界面(Hybrid-UI)解决方案。Ant Design X 旨在通过AI技术提升人机交互的效率和体验,它适用于多种AI场景,包括Web独立式、Web助手式和Web嵌入式等。Ant Design X 的主要优点包括易于配置、极致体验的通用图表库,以及能够快速理解和表达AI意图的能力。产品背景信息显示,Ant Design X 是在蚂蚁集团内部海量AI产品中实践和迭代的结果,它的目标是创造更美好的智能视界。
领先的指令遵循模型家族,提供开源数据、代码和指南。
Llama-3.1-Tulu-3-70B-SFT是Tülu3模型家族的一部分,专为现代后训练技术提供全面指南而设计。该模型不仅在聊天任务上表现出色,还在MATH、GSM8K和IFEval等多种任务上实现了最先进的性能。它是基于公开可用的、合成的和人类创建的数据集训练的,主要使用英语,并遵循Llama 3.1社区许可协议。
基于Transformer的作者表示学习模型
LLNL/LUAR是一个基于Transformer的模型,用于学习作者表示,主要用于作者验证的跨领域迁移研究。该模型在EMNLP 2021论文中被介绍,研究了在一个领域学习的作者表示是否能迁移到另一个领域。模型的主要优点包括能够处理大规模数据集,并在多个不同的领域(如亚马逊评论、同人小说短篇故事和Reddit评论)中进行零样本迁移。产品背景信息包括其在跨领域作者验证领域的创新性研究,以及在自然语言处理领域的应用潜力。该产品是开源的,遵循Apache-2.0许可协议,可以免费使用。
AI代理在网页上执行任务的API
Nfig是一个为AI代理设计的API,允许它们在网页上浏览、点击和执行任务,使用自然语言指令。它通过提供易于集成的API,增强AI工作流程,释放强大的代理能力。Nfig支持自动化登录、虚拟化DOM等复杂操作,使得AI代理能够执行以前难以触及的任务。产品背景强调了其开发者友好的设计、安全性和自我修复能力,以及对数据隐私的承诺。Nfig的价格策略是按使用付费,没有月度承诺,用户只需为实际使用的服务付费。
© 2024 AIbase 备案号:闽ICP备08105208号-14