需求人群:
"目标受众为图像处理专业人士、研究人员以及对图像编辑有需求的普通用户。PromptFix因其强大的图像处理能力和易用性,特别适合需要对图像进行高质量编辑和修复的用户,无论是在学术研究还是商业应用中都能发挥重要作用。"
使用场景示例:
用户可以通过PromptFix去除照片中的模糊,提升图片质量。
在风景照片中注入更多色彩,使场景更加生动。
从照片中移除不需要的物体或人物,如去除照片中的印章或排除左侧的人物。
产品特色:
构建大规模指令遵循数据集,覆盖低级任务、图像编辑和对象创建。
提出高频引导采样方法,控制去噪过程,保留未处理区域的高频细节。
设计辅助提示适配器,利用视觉语言模型增强文本提示,提升任务泛化能力。
在多种图像处理任务中表现优异,包括图像去模糊、色彩增强、物体移除等。
实现与基线模型相当的推理效率,并在盲恢复和组合任务中展现优越的零样本能力。
使用教程:
1. 访问PromptFix网站并了解产品概述。
2. 根据需要的图像处理任务,选择相应的指令。
3. 上传需要处理的图片到PromptFix平台。
4. 输入具体的处理指令,如‘去除模糊’或‘增强色彩’。
5. PromptFix将根据指令对图片进行处理。
6. 查看处理后的图片,并根据需要进行进一步的编辑或下载。
7. 如果需要,可以利用高频引导采样方法对细节进行更精细的控制。
浏览量:4
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
从多视角图像创建3D场景
CAT3D是一个利用多视角扩散模型从任意数量的输入图像生成新视角的3D场景的网站。它通过一个强大的3D重建管道,将生成的视图转化为可交互渲染的3D表示。整个处理时间(包括视图生成和3D重建)仅需一分钟。
一种通过计数事实数据集和自举监督实现真实物体删除和插入的方法
ObjectDrop是一种监督方法,旨在实现照片级真实的物体删除和插入。它利用了一个计数事实数据集和自助监督技术。主要功能是可以从图像中移除物体及其对场景产生的影响(如遮挡、阴影和反射),也能够将物体以极其逼真的方式插入图像。它通过在一个小型的专门捕获的数据集上微调扩散模型来实现物体删除,而对于物体插入,它采用自助监督方式利用删除模型合成大规模的计数事实数据集,在此数据集上训练后再微调到真实数据集,从而获得高质量的插入模型。相比之前的方法,ObjectDrop在物体删除和插入的真实性上有了显著提升。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
图像转换为文本提示的AI工具
ImageToPromptAI是一个AI工具,可以将图像转换为文本提示。用户可以上传图像并创建一系列文本提示,AI会根据图像生成相应的文本描述。该工具可以用于稳定扩散,生成可比较的图像/绘画变化。用户可以根据自己的需求选择不同的套餐,无需订阅。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
Photoshop与SD/SDForge/ComfyUI之间的通信插件
sd-ppp是一个允许用户在Adobe Photoshop和各种Stable Diffusion界面(如SD/SDForge/ComfyUI)之间进行通信的插件。它支持多层操作,包括文本层和图像层,能够处理多个文档和多个Photoshop实例,并允许用户在文档的特定区域工作。该插件对于设计师和艺术家来说是一个强大的工具,因为它可以简化工作流程,提高创作效率,并允许他们利用Stable Diffusion的强大功能来增强他们的设计和艺术作品。
AI技术预览纹身去除效果,辅助决策
AI Tattoo Removal是一个利用人工智能技术展示纹身去除效果的先进工具。它提供了多种可视化选项和用户友好的界面,适用于考虑纹身去除的个人和专业纹身去除专家。该平台使用尖端的机器学习算法分析并展示纹身去除进度,用户可以查看不同的去除阶段、结果和治疗方案,以更好地理解去除过程。产品的主要优点包括即时可视化、个性化体验和免费的基础功能,同时提供高级功能订阅服务。
基于扩散的混合运动动态角色艺术动画生成工具
MikuDance是一个基于扩散的动画生成管道,它结合了混合运动动态来动画化风格化的角色艺术。该技术通过混合运动建模和混合控制扩散两大关键技术,解决了高动态运动和参考引导错位在角色艺术动画中的挑战。MikuDance通过场景运动跟踪策略显式地在像素级空间中建模动态相机,实现统一的角色场景运动建模。在此基础上,混合控制扩散隐式地对不同角色的尺度和体型进行对齐,允许灵活控制局部角色运动。此外,还加入了运动自适应归一化模块,有效注入全局场景运动,为全面的角色艺术动画铺平了道路。通过广泛的实验,MikuDance在各种角色艺术和运动引导下展示了其有效性和泛化能力,始终如一地产生具有显著运动动态的高质量动画。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
图像水印技术,可在图片中嵌入局部化水印信息
Watermark Anything是一个由Facebook Research开发的图像水印技术,它允许在图片中嵌入一个或多个局部化水印信息。这项技术的重要性在于它能够在保证图像质量的同时,实现对图像内容的版权保护和追踪。该技术背景是基于深度学习和图像处理的研究,主要优点包括高鲁棒性、隐蔽性和灵活性。产品定位为研究和开发用途,目前是免费提供给学术界和开发者使用。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
基于GIMM-VFI的ComfyUI帧插值工具
ComfyUI-GIMM-VFI是一个基于GIMM-VFI算法的帧插值工具,使用户能够在图像和视频处理中实现高质量的帧插值效果。该技术通过在连续帧之间插入新的帧来提高视频的帧率,从而使得动作看起来更加流畅。这对于视频游戏、电影后期制作和其他需要高帧率视频的应用场景尤为重要。产品背景信息显示,它是基于Python开发的,并且依赖于CuPy库,特别适用于需要进行高性能计算的场景。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
使用AI将您的面部照片变成面部贴纸
Face Sticker AI是一个AI驱动的面部贴纸工具,它通过添加文本提示将用户的面部图像转换成奇妙的面部贴纸图像。该产品利用先进的面部识别技术和自然语言处理技术,确保生成的贴纸与原始图像高度相似,同时保持高清图像质量。Face Sticker AI不仅支持真人照片,还支持动画角色照片,满足用户个性化表达和创造的需求。产品背景信息显示,Face Sticker AI旨在提供一个简单易用的平台,让用户能够以前所未有的方式探索和创造面部贴纸,释放创造力。产品定价分为Base、Standard和Pro三个等级,用户可以根据自己的需求选择合适的计划购买积分。
利用Claude 3.5 Sonnet Vision API进行图像中物体检测和可视化的强大Python工具
Claude Vision Object Detection是一个基于Python的工具,它利用Claude 3.5 Sonnet Vision API来检测图像中的物体并进行可视化。该工具能够自动在检测到的物体周围绘制边界框,对它们进行标记,并显示置信度分数。它支持处理单张图片或整个目录中的图片,并且具有高精度的置信度分数,为每个检测到的物体使用鲜艳且不同的颜色。此外,它还能保存带有检测结果的注释图片。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
从实体书籍中提取划线或手写标记的文本
Excerptor是一个专门设计来从实体书籍中提取划线或手写标记文本的工具。它通过图像处理和光学字符识别技术,将书籍中的标记文本转换为数字格式,方便用户编辑和保存。这项技术的重要性在于它能够帮助用户快速从大量书籍中提取关键信息,提高研究和学习的效率。Excerptor以其高效、准确的文本识别能力和用户友好的操作界面,满足了学术研究、教育和个人学习等不同领域的需求。目前,Excerptor是免费提供给用户的,它的开发和维护由开源社区负责。
AI视频生成器,从文本提示生成高质量视频
Mochi 1是一个由Genmo开发的前沿开源AI视频生成器,它允许创作者使用文本和图像提示生成高质量、逼真的视频。Mochi 1以其卓越的提示遵循能力和流畅的运动效果,使AI视频生成对每个人都变得容易。它旨在与行业其他模型竞争,为创作者提供更多的控制和更好的视觉成果。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
掌握开放世界交互的视觉-时间上下文提示模型
ROCKET-1是一个视觉-语言模型(VLMs),专门针对开放世界环境中的具身决策制定而设计。该模型通过视觉-时间上下文提示协议,将VLMs与策略模型之间的通信连接起来,利用来自过去和当前观察的对象分割来指导策略-环境交互。ROCKET-1通过这种方式,能够解锁VLMs的视觉-语言推理能力,使其能够解决复杂的创造性任务,尤其是在空间理解方面。ROCKET-1在Minecraft中的实验表明,该方法使代理能够完成以前无法实现的任务,突出了视觉-时间上下文提示在具身决策制定中的有效性。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
无需对齐信息的零样本文本到语音转换模型
MaskGCT是一个创新的零样本文本到语音转换(TTS)模型,它通过消除显式对齐信息和音素级持续时间预测的需求,解决了自回归和非自回归系统中存在的问题。MaskGCT采用两阶段模型:第一阶段使用文本预测从语音自监督学习(SSL)模型中提取的语义标记;第二阶段,模型根据这些语义标记预测声学标记。MaskGCT遵循掩码和预测的学习范式,在训练期间学习预测基于给定条件和提示的掩码语义或声学标记。在推理期间,模型以并行方式生成指定长度的标记。实验表明,MaskGCT在质量、相似性和可理解性方面超越了当前最先进的零样本TTS系统。
© 2024 AIbase 备案号:闽ICP备08105208号-14