需求人群:
"Level-Navi Agent适合研究人员和开发者,用于评估和开发大语言模型在中文网络搜索任务中的应用。它为模型的搜索能力提供了标准化的评估工具,帮助优化模型性能。"
使用场景示例:
使用Level-Navi Agent框架,研究人员可以快速评估不同大语言模型在中文网络搜索任务上的表现。
开发者可以基于该框架开发个性化的网络搜索代理,提升搜索效率。
结合Web24数据集,模型可以在金融、游戏、体育等领域的搜索任务中进行针对性训练和优化。
产品特色:
支持零样本和少样本学习,适应不同模型需求
提供Web24数据集,涵盖金融、游戏、体育、电影和事件五大领域
兼容多种大语言模型,可灵活部署
逐步搜索能力,精准理解复杂问题
开源框架,便于开发者扩展和定制
使用教程:
1. 克隆项目:通过`git clone https://github.com/chuanruihu/Level-Navi-Agent-Search.git`获取代码。
2. 创建Python虚拟环境:使用`conda create --name ai_search python=3.11`创建环境。
3. 安装依赖:进入项目目录后运行`pip install -r requirements.txt`安装依赖。
4. 配置搜索引擎API:在配置文件中设置Bing API Key。
5. 启动测试:运行示例代码`python terminal.py`进行测试。
浏览量:8
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
Level-Navi Agent是一个无需训练即可使用的框架,利用大语言模型进行深度查询理解和精准搜索。
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
Spark-TTS 是一种基于大语言模型的高效单流解耦语音合成模型。
Spark-TTS 是一种基于大语言模型的高效文本到语音合成模型,具有单流解耦语音令牌的特性。它利用大语言模型的强大能力,直接从代码预测的音频进行重建,省略了额外的声学特征生成模型,从而提高了效率并降低了复杂性。该模型支持零样本文本到语音合成,能够跨语言和代码切换场景,非常适合需要高自然度和准确性的语音合成应用。它还支持虚拟语音创建,用户可以通过调整参数(如性别、音高和语速)来生成不同的语音。该模型的背景是为了解决传统语音合成系统中效率低下和复杂性高的问题,旨在为研究和生产提供高效、灵活且强大的解决方案。目前,该模型主要面向学术研究和合法应用,如个性化语音合成、辅助技术和语言研究等。
PhotoDoodle 是一个基于少量样本对数据学习艺术图像编辑的代码实现。
PhotoDoodle 是一个专注于艺术图像编辑的深度学习模型,通过少量样本对数据进行训练,能够快速实现图像的艺术化编辑。该技术的核心优势在于其高效的少样本学习能力,能够在仅有少量图像对的情况下学习到复杂的艺术效果,从而为用户提供强大的图像编辑功能。该模型基于深度学习框架开发,具有较高的灵活性和可扩展性,可以应用于多种图像编辑场景,如艺术风格转换、特效添加等。其背景信息显示,该模型由新加坡国立大学 Show Lab 团队开发,旨在推动艺术图像编辑技术的发展。目前,该模型通过开源方式提供给用户,用户可以根据自身需求进行使用和二次开发。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
VideoGrain 是一种零样本方法,用于实现类别级、实例级和部件级的视频编辑。
VideoGrain 是一种基于扩散模型的视频编辑技术,通过调节时空注意力机制实现多粒度视频编辑。该技术解决了传统方法中语义对齐和特征耦合的问题,能够对视频内容进行精细控制。其主要优点包括零样本编辑能力、高效的文本到区域控制以及特征分离能力。该技术适用于需要对视频进行复杂编辑的场景,如影视后期、广告制作等,能够显著提升编辑效率和质量。
TableGPT2-7B 是一款专注于表格数据处理的大语言模型,适用于数据分析和商业智能任务。
TableGPT2-7B 是由浙江大学开发的大规模解码器模型,专门用于处理数据密集型任务,尤其是表格数据的解读和分析。该模型基于 Qwen2.5 架构,通过持续预训练(CPT)和监督微调(SFT)优化,能够处理复杂的表格查询和商业智能(BI)应用。它支持中文查询,适合需要高效处理结构化数据的企业和研究机构。模型目前免费开源,未来可能会推出更专业的版本。
一个利用人工智能帮助学习和贡献美国手语(ASL)的平台。
Signs 是一个由 NVIDIA 支持的创新平台,旨在通过人工智能技术帮助用户学习美国手语(ASL),并允许用户通过录制手语视频贡献数据,以构建全球最大的开放手语数据集。该平台利用 AI 实时反馈和 3D 动画技术,为初学者提供友好的学习体验,同时为手语社区提供数据支持,推动手语学习的普及和多样性。平台计划在 2025 年下半年公开数据集,以促进更多相关技术和服务的开发。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
一个开源的聊天应用,使用Exa的API进行网络搜索,结合Deepseek R1进行推理。
Exa & Deepseek Chat App是一个开源的聊天应用,旨在通过Exa的API进行实时网络搜索,并结合Deepseek R1语言模型进行推理,以提供更准确的聊天体验。该应用基于Next.js、TailwindCSS和TypeScript构建,使用Vercel进行托管。它允许用户在聊天中获取最新的网络信息,并通过强大的语言模型进行智能对话。该应用免费开源,适合开发者和企业用户使用,可作为聊天工具的开发基础。
Dolphin R1是一个用于训练推理模型的数据集,包含80万条样本。
Dolphin R1是一个由Cognitive Computations团队创建的数据集,旨在训练类似DeepSeek-R1 Distill模型的推理模型。该数据集包含30万条来自DeepSeek-R1的推理样本、30万条来自Gemini 2.0 flash thinking的推理样本以及20万条Dolphin聊天样本。这些数据集的组合为研究人员和开发者提供了丰富的训练资源,有助于提升模型的推理能力和对话能力。该数据集的创建得到了Dria、Chutes、Crusoe Cloud等多家公司的赞助支持,这些赞助商为数据集的开发提供了计算资源和资金支持。Dolphin R1数据集的发布,为自然语言处理领域的研究和开发提供了重要的基础,推动了相关技术的发展。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
Doubao-1.5-pro 是一个高性能的稀疏 MoE 大语言模型,专注于推理性能与模型能力的极致平衡。
Doubao-1.5-pro 是由豆包团队开发的高性能稀疏 MoE(Mixture of Experts)大语言模型。该模型通过训练-推理一体化设计,实现了模型性能与推理性能的极致平衡。它在多个公开评测基准上表现出色,尤其在推理效率和多模态能力方面具有显著优势。该模型适用于需要高效推理和多模态交互的场景,如自然语言处理、图像识别和语音交互等。其技术背景基于稀疏激活的 MoE 架构,通过优化激活参数比例和训练算法,实现了比传统稠密模型更高的性能杠杆。此外,该模型还支持动态调整参数,以适应不同的应用场景和成本需求。
X-Dyna是一种基于扩散模型的零样本人类图像动画生成技术。
X-Dyna是一种创新的零样本人类图像动画生成技术,通过将驱动视频中的面部表情和身体动作迁移到单张人类图像上,生成逼真且富有表现力的动态效果。该技术基于扩散模型,通过Dynamics-Adapter模块,将参考外观上下文有效整合到扩散模型的空间注意力中,同时保留运动模块合成流畅复杂动态细节的能力。它不仅能够实现身体姿态控制,还能通过本地控制模块捕捉与身份无关的面部表情,实现精确的表情传递。X-Dyna在多种人类和场景视频的混合数据上进行训练,能够学习物理人体运动和自然场景动态,生成高度逼真和富有表现力的动画。
PaSa 是一个由大语言模型驱动的先进学术论文搜索代理,能够自主决策并获取准确结果。
PaSa 是由字节跳动开发的一种先进学术论文搜索代理,基于大语言模型(LLM)技术,能够自主调用搜索工具、阅读论文并筛选相关参考文献,以获取复杂学术查询的全面准确结果。该技术通过强化学习优化,使用合成数据集 AutoScholarQuery 进行训练,并在真实世界查询数据集 RealScholarQuery 上表现出色,显著优于传统搜索引擎和基于 GPT 的方法。PaSa 的主要优势在于其高召回率和精准率,能够为研究人员提供更高效的学术搜索体验。
将Common Crawl转化为精细的长期预训练数据集
Nemotron-CC是一个基于Common Crawl的6.3万亿token的数据集。它通过分类器集成、合成数据改写和减少启发式过滤器的依赖,将英文Common Crawl转化为一个6.3万亿token的长期预训练数据集,包含4.4万亿全球去重的原始token和1.9万亿合成生成的token。该数据集在准确性和数据量之间取得了更好的平衡,对于训练大型语言模型具有重要意义。
高质量的数据集、工具和概念,用于大型语言模型的微调。
mlabonne/llm-datasets 是一个专注于大型语言模型(LLM)微调的高质量数据集和工具的集合。该产品为研究人员和开发者提供了一系列经过精心筛选和优化的数据集,帮助他们更好地训练和优化自己的语言模型。其主要优点在于数据集的多样性和高质量,能够覆盖多种使用场景,从而提高模型的泛化能力和准确性。此外,该产品还提供了一些工具和概念,帮助用户更好地理解和使用这些数据集。其背景信息包括由 mlabonne 创建和维护,旨在推动 LLM 领域的发展。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
大规模机器人学习数据集,推动多用途机器人策略发展。
AGIBOT WORLD是一个专为推进多用途机器人策略而设计的大规模机器人学习数据集。它包括基础模型、基准测试和一个生态系统,旨在为学术界和工业界提供高质量的机器人数据,为具身AI铺平道路。该数据集包含100多台机器人的100万条以上轨迹,覆盖100多个真实世界场景,涉及精细操控、工具使用和多机器人协作等任务。它采用尖端的多模态硬件,包括视觉触觉传感器、耐用的6自由度灵巧手和具有全身控制的移动双臂机器人,支持模仿学习、多智能体协作等研究。AGIBOT WORLD的目标是改变大规模机器人学习,推进可扩展的机器人系统生产,是一个开源平台,邀请研究人员和实践者共同塑造具身AI的未来。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
模型评测平台
FlagEval是一个模型评测平台,专注于大语言模型和多模态模型的评测。它提供了一个公正、透明的环境,让不同的模型在同一标准下进行比较,帮助研究者和开发者了解模型性能,推动人工智能技术的发展。该平台涵盖了对话模型、视觉语言模型等多种模型类型,支持开源和闭源模型的评测,并提供专项评测如K12学科测验和金融量化交易评测。
多功能AI智能助手平台
ChatHi是一个多功能AI智能助手平台,提供包括文案创作、知识问答、代码编程、逻辑推演、数理推算等服务。平台依托于先进的大语言模型技术,如天工大模型、Claude系列模型以及G-3.5、G-4.0等,旨在提升用户工作效率和信息处理能力。产品背景信息显示,ChatHi由中国公司昆仑万维自研,对标国际先进的ChatGPT技术,具有强大的本土化优势和价格竞争力。
首个说唱音乐生成数据集
RapBank是一个专注于说唱音乐的数据集,它从YouTube收集了大量说唱歌曲,并提供了一个精心设计的数据预处理流程。这个数据集对于音乐生成领域具有重要意义,因为它提供了大量的说唱音乐内容,可以用于训练和测试音乐生成模型。RapBank数据集包含94,164首歌曲链接,成功下载了92,371首歌曲,总时长达到5,586小时,覆盖84种不同的语言,其中英语歌曲的总时长最高,占总时长的大约三分之二。
首款基于行为基础模型的虚拟物理人形代理控制工具
Meta Motivo是由Meta FAIR发布的首款行为基础模型,通过一种新颖的无监督强化学习算法预训练,用于控制复杂的虚拟人形代理完成全身任务。该模型能够在测试时,通过提示解决未见过的任务,如动作跟踪、姿势达到和奖励优化,无需额外学习或微调。这一技术的重要性在于其零样本学习能力,能够处理多种复杂任务,同时保持行为的鲁棒性。Meta Motivo的开发背景是基于对更复杂任务和不同类型代理的泛化能力的追求,其开源的预训练模型和训练代码鼓励社区进一步发展行为基础模型的研究。
用于强化学习验证的数学问题数据集
RLVR-GSM-MATH-IF-Mixed-Constraints数据集是一个专注于数学问题的数据集,它包含了多种类型的数学问题和相应的解答,用于训练和验证强化学习模型。这个数据集的重要性在于它能够帮助开发更智能的教育辅助工具,提高学生解决数学问题的能力。产品背景信息显示,该数据集由allenai在Hugging Face平台上发布,包含了GSM8k和MATH两个子集,以及带有可验证约束的IF Prompts,适用于MIT License和ODC-BY license。
本地网络研究和报告编写助手
Research Rabbit是一个基于人工智能的研究助手,能够自动深入用户定义的任何主题。它使用大型语言模型(LLM)根据用户的主题生成搜索查询,获取网络搜索结果,并用LLM总结结果。然后,它使用LLM反思总结,检查知识缺口,并生成新的搜索查询来填补这些缺口。这个过程会重复进行,直到用户定义的周期数,最终提供一个包含所有使用源的最终Markdown总结。该产品完全配置为与本地LLM(通过Ollama)一起运行。
大规模多模态推理与指令调优平台
MAmmoTH-VL是一个大规模多模态推理平台,它通过指令调优技术,显著提升了多模态大型语言模型(MLLMs)在多模态任务中的表现。该平台使用开放模型创建了一个包含1200万指令-响应对的数据集,覆盖了多样化的、推理密集型的任务,并提供了详细且忠实的理由。MAmmoTH-VL在MathVerse、MMMU-Pro和MuirBench等基准测试中取得了最先进的性能,展现了其在教育和研究领域的重要性。
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
© 2025 AIbase 备案号:闽ICP备08105208号-14