需求人群:
"目标受众包括音乐制作人、舞蹈编导、视频游戏开发者、虚拟现实内容创作者和任何需要生成或同步音乐、文本和动作数据的专业人士。UniMuMo能够提供跨模态的创作工具,帮助他们更高效地创作和实现创意。"
使用场景示例:
音乐制作人利用UniMuMo根据文本描述生成音乐和舞蹈动作。
视频游戏开发者使用UniMuMo为游戏中的NPC生成同步的音乐和动作。
虚拟现实内容创作者使用UniMuMo为虚拟角色生成自然的动作和音乐反应。
产品特色:
支持文本、音乐和动作数据的输入条件,生成跨模态的输出。
通过节奏模式对未配对的音乐和动作数据进行对齐,利用现有的大规模音乐和动作数据集。
采用统一的编码器-解码器转换器架构,将音乐、动作和文本桥接。
提出了音乐运动并行生成方案,将所有音乐和动作生成任务统一到单一的转换器解码器架构中。
通过微调现有的预训练单模态模型来设计模型,显著降低了计算需求。
在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
使用教程:
访问UniMuMo的在线演示页面。
阅读页面上的介绍,了解模型的功能和背景。
根据需要选择输入模态,如文本、音乐或动作。
输入具体的文本描述、音乐片段或动作数据。
提交输入数据,等待模型生成跨模态的输出。
查看生成的结果,如音乐、动作或文本描述。
根据需要调整输入数据或参数,重复生成过程以获得更满意的结果。
浏览量:66
最新流量情况
月访问量
188
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
49.75%
流量来源
直接访问
83.42%
自然搜索
5.48%
邮件
0.03%
外链引荐
4.83%
社交媒体
5.48%
展示广告
0
截止目前所有流量趋势图
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
推动人工智能安全治理,促进技术健康发展
《人工智能安全治理框架》1.0版是由全国网络安全标准化技术委员会发布的技术指南,旨在鼓励人工智能创新发展的同时,有效防范和化解人工智能安全风险。该框架提出了包容审慎、确保安全,风险导向、敏捷治理,技管结合、协同应对,开放合作、共治共享等原则。它结合人工智能技术特性,分析风险来源和表现形式,针对模型算法安全、数据安全和系统安全等内生安全风险,以及网络域、现实域、认知域、伦理域等应用安全风险,提出了相应的技术应对和综合防治措施。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
京东自主研发的人工智能开放平台
京东人工智能开放平台NeuHub,汇聚京东自主研发的人工智能核心技术,包含语音、图像、视频、NLP等技术,通过平台向外开放,助力行业智能升级。平台还提供数据标注、模型开发、训练和发布等全流程服务,以及创新应用案例,帮助企业实现智能化转型。
为人工智能提供多模态数据支持的高效数据库解决方案。
Activeloop Deep Lake是一个专为人工智能设计的数据库,支持多模态数据(如文本、图像、视频等)的高效存储和检索。它通过优化数据处理流程,帮助企业和开发者快速构建和部署AI应用,显著提升数据准备和模型训练的效率。Deep Lake的技术优势在于其高性能、可扩展性和易用性,使其成为AI开发中的重要基础设施。产品主要面向企业级用户和AI开发者,提供灵活的定价方案以满足不同规模用户的需求。
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
OLAMI是一个人工智能开放平台
OLAMI是一个提供云端API、管理界面、多元机器感知解决方案的人工智能软件开发平台。OLAMI平台具有语音识别、自然语言理解、对话管理、语音合成等语音AI技术,以及图像识别、语义理解等视觉AI技术,可以轻松地为产品加入人工智能,提升用户体验。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。
Gen-2是一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。它可以通过将图像或文字提示的构图和风格应用于源视频的结构(Video to Video),或者仅使用文字(Text to Video)来实现。就像拍摄了全新的内容,而实际上并没有拍摄任何东西。Gen-2提供了多种模式,可以将任何图像、视频剪辑或文字提示转化为引人注目的影片作品。
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
一款强大的多模态小语言模型
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
机器学习研究与产品实验室,构建有用的通用人工智能
Adept是一个机器学习研究与产品实验室,通过使人类和计算机能够创造性地共同工作,构建通用人工智能。它将你的目标用简单的语言转化为日常使用的软件上的操作。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
由人工智能强力驱动,为职场人打造千人千面创意写作工作流
多墨智能写作是一款由人工智能强力驱动的创意写作工具,帮助职场人提高工作交付效率。它独家支持根据不同岗位通过算法一键生成工作文档,适合各种职业需求,包括产品经理、抖音运营专员、战略咨询专家、老师、医生、公职人员、旅游导游、公关等。多墨智能写作提供一键成文、辅助撰写、命令自定义和私有化部署等功能,可定制解决方案并保护内部数据隐私。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
新一代多模态模型
Adept Fuyu-Heavy是一款新型的多模态模型,专为数字代理设计。它在多模态推理方面表现出色,尤其在UI理解方面表现出色,同时在传统的多模态基准测试中也表现良好。此外,它展示了我们可以扩大Fuyu架构并获得所有相关好处的能力,包括处理任意大小/形状的图像和有效地重复使用现有的变压器优化。它还具有匹配或超越相同计算级别模型性能的能力,尽管需要将部分容量用于图像建模。
© 2025 AIbase 备案号:闽ICP备08105208号-14