需求人群:
"该产品适合研究人员、开发者以及对图像生成技术感兴趣的从业者,尤其是那些需要高质量图像生成解决方案的团队和个人。其开源特性也使其成为学术研究和工业应用的理想选择。"
使用场景示例:
使用 IMM 在 CIFAR-10 数据集上生成高质量的图像样本
利用 IMM 的预训练模型快速生成 256x256 分辨率的 ImageNet 图像
结合 IMM 的灵活性,为创意设计项目生成独特的图像素材
产品特色:
提供高质量图像生成,适用于 CIFAR-10 和 ImageNet 等数据集
支持多种配置的预训练模型,便于不同场景下的快速部署
通过矩匹配技术优化生成过程,提高生成图像的逼真度
灵活的模型架构设计,支持自定义配置和扩展
提供完整的训练和生成脚本,方便用户进行实验和开发
使用教程:
1. 克隆项目仓库到本地:`git clone https://github.com/lumalabs/imm`
2. 创建并激活 Conda 环境:`conda env create -f env.yml`
3. 下载预训练模型文件(如 CIFAR-10 或 ImageNet 模型)
4. 使用生成脚本生成图像:`python generate_images.py --config-name=CONFIG_NAME eval.resume=CKPT_PATH REPLACEMENT_ARGS`
5. 根据需要调整配置文件和参数,以优化生成效果
浏览量:119
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
一款通过生成模型提升图像生成一致性的工具。
UNO 是一个基于扩散变换器的多图像条件生成模型,通过引入渐进式跨模态对齐和通用旋转位置嵌入,实现高一致性的图像生成。其主要优点在于增强了对单一或多个主题生成的可控性,适用于各种创意图像生成任务。
开源生成模型训练、调优与推理框架
SCEPTER是一个开源代码库,致力于生成式模型的训练、调优和推理,涵盖图像生成、迁移、编辑等一系列下游任务。它整合了社区主流实现以及阿里巴巴通逸实验室自研方法,为生成式领域的研究人员和从业者提供全面、通用的工具集。这个多功能库旨在促进创新,加速这个快速发展的领域的进步。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
基于Stable Diffusion的LoRA模型,生成逼真动漫风格图像
RealAnime - Detailed V1 是一个基于Stable Diffusion的LoRA模型,专门用于生成逼真的动漫风格图像。该模型通过深度学习技术,能够理解并生成高质量的动漫人物图像,满足动漫爱好者和专业插画师的需求。它的重要性在于能够大幅度提高动漫风格图像的生成效率和质量,为动漫产业提供强大的技术支持。目前,该模型在Tensor.Art平台上提供,用户可以通过在线方式使用,无需下载安装,方便快捷。价格方面,用户可以通过购买Buffet计划来解锁下载权益,享受更灵活的使用方式。
使用线条生成深度风格图像
Line2Depth SD 1.5是一个模型,可以利用像Canny、线条、Softedge等控制网络,仅通过线条创建具有深度感的图像。在提示中添加'depth, 3d'。Lora文件名后的数字表示合并的Lora数量,每个将产生不同的结果,因此请选择一个效果较好的。
利用尖端AI技术,将创意转化为高质量图像。
Flux AI 图像生成器是由Black Forest Labs开发的,基于革命性的Flux系列模型,提供尖端的文本到图像技术。该产品通过其120亿参数的模型,能够精确解读复杂的文本提示,创造出多样化、高保真的图像。Flux AI 图像生成器不仅适用于个人艺术创作,也可用于商业应用,如品牌视觉、社交媒体内容等。它提供三种不同的版本以满足不同用户的需求:Flux Pro、Flux Dev和Flux Schnell。
深度学习工具链,用于生成你的数字孪生体。
FaceChain是一个深度学习工具链,由ModelScope提供支持,能够通过至少1张肖像照片生成你的数字孪生体,并在不同设置中生成个人肖像(支持多种风格)。用户可以通过FaceChain的Python脚本、熟悉的Gradio界面或sd webui来训练数字孪生模型并生成照片。FaceChain的主要优点包括其生成个性化肖像的能力,支持多种风格,以及易于使用的界面。
这是一个使用深度学习为文字描述生成动画视频的模型
AnimateLCM是一个使用深度学习生成动画视频的模型。它可以仅使用极少的采样步骤就生成高保真的动画视频。与直接在原始视频数据集上进行一致性学习不同,AnimateLCM采用了解耦的一致性学习策略,将图像生成先验知识和运动生成先验知识的萃取进行解耦,从而提高了训练效率并增强了生成的视觉质量。此外,AnimateLCM还可以与Stable Diffusion社区的插件模块配合使用,实现各种可控生成功能。AnimateLCM已经在基于图像的视频生成和基于布局的视频生成中验证了其性能。
AI春联生成器 - 创意十足的春节对联,让AI拿捏你的心弦。
AI春联生成器是一款由YunYouJun开发的智能春联生成器,旨在为用户提供个性化、创意十足的春节对联。利用先进的深度学习技术,用户可以根据输入和需求生成独特的春联对。支持多种对联样式选择,包括横批从右往左、上联在右下联在左等多种风格,实现更灵活的排版。用户还可以定制字体,使春联更具艺术感。通过配置DeepSeek开发平台的API Key,用户可以享受更强大的AI生成功能。提供多语言界面,方便全球用户使用。
高效能的文本到图像生成模型
SDXL Flash是由SD社区与Project Fluently合作推出的文本到图像生成模型。它在保持生成图像质量的同时,提供了比LCM、Turbo、Lightning和Hyper更快的处理速度。该模型基于Stable Diffusion XL技术,通过优化步骤和CFG(Guidance)参数,实现了图像生成的高效率和高质量。
基于图像学习的高质量3D纹理形状生成模型
GET3D是一种基于图像学习的生成模型,可以直接生成具有复杂拓扑结构、丰富几何细节和高保真纹理的3D模型。通过结合可微分表面建模、可微分渲染和2D生成对抗网络,我们从2D图像集合中训练了该模型。GET3D能够生成高质量的3D纹理模型,涵盖了汽车、椅子、动物、摩托车和人物等各种形态,相比之前的方法有显著改进。
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
AI图像生成器
Stable Diffusion 是一个深度学习模型,可以从文本描述生成图像。它提供高质量的图像生成,可以根据简单的文本输入创建逼真的图像。它具有快速生成的优势,可以通过修复和扩展图像的大小来添加或替换图像的部分。Stable Diffusion XL是该模型的最新版本,使用更大的UNet骨干网络生成更高质量的图像。您可以免费在Stable Diffusion在线使用这个AI图像生成器。
自动生成丰富详细的图像描述
image-textualization 是一个自动框架,用于生成丰富和详细的图像描述。该框架利用深度学习技术,能够自动从图像中提取信息,并生成准确、详细的描述文本。这项技术在图像识别、内容生成和辅助视觉障碍人士等领域具有重要应用价值。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
一种通过视觉上下文学习的通用图像生成框架。
VisualCloze 是一个通过视觉上下文学习的通用图像生成框架,旨在解决传统任务特定模型在多样化需求下的低效率问题。该框架不仅支持多种内部任务,还能泛化到未见过的任务,通过可视化示例帮助模型理解任务。这种方法利用了先进的图像填充模型的强生成先验,为图像生成提供了强有力的支持。
开源自回归视觉生成模型项目
Open-MAGVIT2是由腾讯ARC实验室开源的一个自回归图像生成模型系列,包含从300M到1.5B不同规模的模型。该项目复现了Google的MAGVIT-v2分词器,实现了在ImageNet 256×256数据集上达到1.17 rFID的先进重建性能。通过引入不对称分词技术,将大词汇表分解为不同大小的子词汇表,并引入'下一个子标记预测'来增强子标记间的交互,以提高生成质量。所有模型和代码均已开源,旨在推动自回归视觉生成领域的创新和创造力。
先进的多模态图像生成模型,结合文本提示和视觉参考生成高质量图像。
Qwen2vl-Flux是一个结合了Qwen2VL视觉语言理解能力的FLUX框架的先进多模态图像生成模型。该模型擅长基于文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制。产品背景信息显示,Qwen2vl-Flux集成了Qwen2VL的视觉语言能力,增强了FLUX的图像生成精度和上下文感知能力。其主要优点包括增强的视觉语言理解、多种生成模式、结构控制、灵活的注意力机制和高分辨率输出。
© 2025 AIbase 备案号:闽ICP备08105208号-14