需求人群:
"该产品适合开发者、数据科学家及企业用户,他们需要一个强大的多模态 AI 模型来处理复杂的任务和指令。Gemini 3 Pro Preview 的强大推理能力和编码功能,使其成为开发高效 AI 应用的理想选择。"
使用场景示例:
使用 Gemini 3 Pro Preview 进行复杂的多模态数据分析。
在应用开发中利用其强大的编码能力生成高效的代码。
通过与 Google 搜索集成,实时获取和处理外部信息。
产品特色:
支持思维模式,提供低思维级别(快速高效)和高思维级别(全面推理)选择。
具备与 Google 搜索的对接能力,可用于实时信息获取。
支持结构化输出和批量预测,提升处理效率。
支持代码执行作为工具,便于开发者使用。
实现上下文缓存和隐式缓存,提升模型的响应速度。
支持流式功能调用,增强交互体验。
支持 URL 上下文,为输入信息提供额外背景。
提供高达 1M 的输入令牌限制,适合复杂任务处理。
使用教程:
访问 Google Cloud 控制台并登录账号。
启用 Vertex AI API。
在 Vertex AI Studio 中编写提示并提交。
使用命令行工具(CLI)发送请求以获取模型输出。
根据需要调整思维模式和上下文参数,以优化输出结果。
浏览量:3
基于多模态的 AI 模型,无缝进行图像、视频、音频和代码的推理
Google Gemini 是一款基于多模态的 AI 模型,能够无缝进行图像、视频、音频和代码的推理。Gemini 是 DeepMind 推出的最先进的 AI 模型,能够在 MMLU(大规模多任务语言理解)等各项测试中超越人类专家。Gemini 具有出色的推理能力,在各种多模态任务中取得了最先进的性能。
AI多模态数据绑定
ImageBind是一种新的AI模型,能够同时绑定六种感官模态的数据,无需显式监督。通过识别这些模态之间的关系(图像和视频、音频、文本、深度、热成像和惯性测量单元(IMUs)),这一突破有助于推动AI发展,使机器能够更好地分析多种不同形式的信息。探索演示以了解ImageBind在图像、音频和文本模态上的能力。
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
最强大的代理和编码模型,具备最佳的多模态理解能力。
Gemini 3 Pro Preview 是 Google 最新推出的最强大模型,旨在解决复杂的代理问题,具备强大的编码能力和先进的推理能力。该模型相较于之前的版本,在复杂指令跟随方面有显著改进,输出效率更高。它具有 1M 的上下文窗口和多模态理解能力,适用于各种数据类型的输入,如音频、图像、视频、文本和 PDF。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
实时多模态内容审核平台
Seyft AI 是一个实时的多模态内容审核平台,能够过滤文本、图像和视频中的有害和不相关内容,确保合规性,并为不同的语言和文化背景提供个性化解决方案。该平台的主要优点包括实时审核、多语言支持、无需人工干预的图像和视频审核,以及易于集成的API。Seyft AI 的背景信息显示,它旨在帮助企业保持数字空间的清洁和安全,适用于需要内容审核的各种应用场景。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
谷歌多模态AI模型Gemini,支持文本和图像的组合推理
Gemini是谷歌DeepMind推出的新一代人工智能系统。它能够进行多模态推理,支持文本、图像、视频、音频和代码之间的无缝交互。Gemini在语言理解、推理、数学、编程等多个领域都超越了之前的状态,成为迄今为止最强大的AI系统之一。它有三个不同规模的版本,可满足从边缘计算到云计算的各种需求。Gemini可以广泛应用于创意设计、写作辅助、问题解答、代码生成等领域。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
xAI推出的最新旗舰AI模型Grok 3,具备强大的推理和多模态处理能力。
Grok 3是由Elon Musk的AI公司xAI开发的最新旗舰AI模型。它在计算能力和数据集规模上显著提升,能够处理复杂的数学、科学问题,并支持多模态输入。其主要优点是推理能力强大,能够提供更准确的答案,并且在某些基准测试中超越了现有的顶尖模型。Grok 3的推出标志着xAI在AI领域的进一步发展,旨在为用户提供更智能、更高效的AI服务。该模型目前主要通过Grok APP和X平台提供服务,未来还将推出语音模式和企业API接口。其定位是高端AI解决方案,主要面向需要深度推理和多模态交互的用户。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
多模态多视角视频数据集和基准挑战
Ego-Exo4D 是一个多模态多视角视频数据集和基准挑战,以捕捉技能人类活动的自我中心和外部中心视频为中心。它支持日常生活活动的多模态机器感知研究。该数据集由 839 位佩戴摄像头的志愿者在全球 13 个城市收集,捕捉了 1422 小时的技能人类活动视频。该数据集提供了专家评论、参与者提供的教程样式的叙述和一句话的原子动作描述等三种自然语言数据集,配对视频使用。Ego-Exo4D 还捕获了多视角和多种感知模态,包括多个视角、七个麦克风阵列、两个 IMUs、一个气压计和一个磁强计。数据集记录时严格遵守隐私和伦理政策,参与者的正式同意。欲了解更多信息,请访问官方网站。
统一的多模态生成模型
Unified-IO 2是一个统一的多模态生成模型,能够理解和生成图像、文本、音频和动作。它使用单个编码器-解码器Transformer模型,将不同模式(图像、文本、音频、动作等)的输入和输出都表示为一个共享的语义空间进行处理。该模型从头开始在大规模的多模态预训练语料上进行训练,使用了多模态的去噪目标进行优化。为了学会广泛的技能,该模型还在120个现有数据集上进行微调,这些数据集包含提示和数据增强。Unified-IO 2在GRIT基准测试中达到了最先进的性能,在30多个基准测试中都取得了强劲的结果,包括图像生成和理解、文本理解、视频和音频理解以及机器人操作。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
苹果发布多模态LLM模型MM1
苹果发布了自己的大语言模型MM1,这是一个最高有30B规模的多模态LLM。通过预训练和SFT,MM1模型在多个基准测试中取得了SOTA性能,展现了上下文内预测、多图像推理和少样本学习能力等吸引人的特性。
多模态引导的共语言面部动画生成
Media2Face是一款通过音频、文本和图像多模态引导的共语言面部动画生成工具。它首先利用通用神经参数化面部资产(GNPFA)将面部几何和图像映射到高度通用的表情潜在空间,然后从大量视频中提取高质量的表情和准确的头部姿态,构建了M2F-D数据集。最后,采用GNPFA潜在空间中的扩散模型进行共语言面部动画生成。该工具不仅在面部动画合成方面具有高保真度,还拓展了表现力和样式适应性。
高性能多模态AI模型
Gemini Pro是DeepMind推出的一款高性能多模态AI模型,专为广泛的任务设计,具有高达两百万token的长上下文窗口,能够处理大规模文档、代码、音频和视频等。它在多个基准测试中表现出色,包括代码生成、数学问题解决和多语言翻译等。
多模态智能代理框架,解决复杂任务
OmAgent是一个复杂的多模态智能代理系统,致力于利用多模态大型语言模型和其他多模态算法来完成引人入胜的任务。该项目包括一个轻量级的智能代理框架omagent_core,精心设计以应对多模态挑战。OmAgent由三个核心组件构成:Video2RAG、DnCLoop和Rewinder Tool,分别负责长视频理解、复杂问题分解和信息回溯。
© 2025 AIbase 备案号:闽ICP备08105208号-14