浏览量:341
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
基于意图的提示校准框架
AutoPrompt是一个用于提示优化的框架,旨在通过意图校准过程自动生成高质量、详细的提示,以适应用户意图。该框架通过迭代构建挑战性边缘案例数据集并相应优化提示,减少手动提示工程的工作量,并有效解决提示敏感性和固有的提示歧义问题。
大语言模型的提示工程指南
提示工程指南是一份全面介绍提示工程的指南,包括基本概念、设计提示的通用技巧、提示技术、提示应用等内容。它帮助用户更好地了解大型语言模型的能力和局限性,并掌握与大语言模型交互和研发的各种技能和技术。
多模态大型语言模型的优化与分析
MM1.5是一系列多模态大型语言模型(MLLMs),旨在增强文本丰富的图像理解、视觉指代表明和接地以及多图像推理的能力。该模型基于MM1架构,采用以数据为中心的模型训练方法,系统地探索了整个模型训练生命周期中不同数据混合的影响。MM1.5模型从1B到30B参数不等,包括密集型和混合专家(MoE)变体,并通过广泛的实证研究和消融研究,提供了详细的训练过程和决策见解,为未来MLLM开发研究提供了宝贵的指导。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
先进的代码优化和编译器推理的大型语言模型。
LLM Compiler-7b是Meta开发的一款专注于代码优化和编译器推理的大型语言模型。它基于Code Llama模型,通过深度学习优化代码,支持编译器中间表示、汇编语言和优化的理解。此模型在减少代码大小和从汇编到编译器中间表示的反编译方面展现出卓越的性能,是编译器研究人员和工程师的有力工具。
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
更有效的提示大型多模态模型,释放潜能
Multimodal-Maestro为您提供更多对大型多模态模型的控制,以获得您想要的输出。通过更有效的提示策略,您可以让多模态模型执行您以前不知道(或认为不可能)的任务。想知道它是如何工作的吗?试试我们的HF空间! 该项目仍在建设中,API可能会发生变化。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
多语言大型语言模型,优化对话和文本生成。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种大小的模型,专门针对多语言对话使用案例进行了优化,并在行业基准测试中表现优异。该模型使用优化的transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进一步与人类偏好对齐,以确保其有用性和安全性。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
1位大型语言模型推理框架
BitNet是由微软开发的官方推理框架,专为1位大型语言模型(LLMs)设计。它提供了一套优化的核心,支持在CPU上进行快速且无损的1.58位模型推理(NPU和GPU支持即将推出)。BitNet在ARM CPU上实现了1.37倍到5.07倍的速度提升,能效比提高了55.4%到70.0%。在x86 CPU上,速度提升范围从2.37倍到6.17倍,能效比提高了71.9%到82.2%。此外,BitNet能够在单个CPU上运行100B参数的BitNet b1.58模型,实现接近人类阅读速度的推理速度,拓宽了在本地设备上运行大型语言模型的可能性。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
轻量级语言模型编程库,将提示视为函数。
ell是一个轻量级的语言模型编程库,它将提示视为函数,而不是简单的字符串。ell的设计基于在OpenAI和创业生态系统中多年构建和使用语言模型的经验。它提供了一种全新的编程方式,允许开发者通过定义函数来生成发送给语言模型的字符串提示或消息列表。这种封装方式为用户创建了一个清晰的接口,用户只需关注LMP所需的数据。ell还提供了丰富的工具,支持监控、版本控制和可视化,使得提示工程从一门黑艺术转变为一门科学。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
探索优化的商业和个人任务提示。
Anthropic的提示库是一个在线平台,提供针对各种商业和个人任务优化的提示。它通过用户提交的提示,帮助用户更高效地完成任务,提高工作效率。平台支持多种任务类型,从编程、写作到商业分析等,是一个多功能的辅助工具。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
提升语言模型性能的元提示技术
Meta-Prompting是一种有效的脚手架技术,旨在增强语言模型(LM)的功能。该方法将单个LM转化为一个多方位的指挥者,擅长管理和整合多个独立的LM查询。通过使用高层指令,元提示引导LM将复杂任务分解为更小、更易管理的子任务。然后,这些子任务由相同LM的不同“专家”实例处理,每个实例都根据特定的定制指令操作。这个过程的核心是LM本身,作为指挥者,它确保这些专家模型的输出之间的无缝沟通和有效整合。它还利用其固有的批判性思维和强大的验证过程来完善和验证最终结果。这种协作提示方法使单个LM能够同时充当全面的指挥者和多样化专家团队,显著提升其在各种任务中的性能。元提示的零射击、任务无关性质极大地简化了用户交互,无需详细的任务特定指令。此外,我们的研究表明,外部工具(如Python解释器)与元提示框架能够无缝集成,从而扩大了其适用性和效用。通过与GPT-4的严格实验,我们证明了元提示优于传统脚手架方法:在所有任务中取平均值,包括24点游戏、一步将军和Python编程难题,使用Python解释器功能的元提示比标准提示高出17.1%,比专家(动态)提示高出17.3%,比多人格提示高出15.2%。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
开放的大型语言模型排行榜
Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
开源大型语言模型工具集合
Open Source LLM Tools是一个专注于收集和展示开源大型语言模型(LLM)工具的平台。它提供了一个更新频繁的资源库,帮助开发者和研究者发现和利用最新的开源AI工具。该平台的主要优点在于其高更新频率和对活跃开源AI开发者的聚焦,使得用户能够及时获取到行业的最新动态和技术进展。
智能优化提示,提升生成模型效果
Cohere Prompt Tuner 是一款用于优化生成模型提示的工具,它通过自定义的优化和评估循环来改进提示,从而提高模型输出的有效性。该工具自动化了提示工程的手动方面,并能解锁传统提示工程难以实现的模型能力。在内部评估中,Prompt Tuner 成功优化了94%的使用案例,显著提升了开发流程的效率。
© 2025 AIbase 备案号:闽ICP备08105208号-14