需求人群:
"目标受众为软件开发者、编程爱好者以及需要自动化解决软件问题的团队。Agentless通过自动化的方式减少手动调试和修复软件问题的工作量,提高开发效率,降低成本,特别适合需要快速迭代和维护大型代码库的团队。"
使用场景示例:
案例一:在SWE-bench lite上,Agentless实现了82个修复,解决率达27.3%。
案例二:与Claude 3.5 Sonnet集成后,Agentless在SWE-bench lite和verified上的解决率分别达到40.7%和50.8%。
案例三:Agentless 1.5版本发布,提供了更高效的软件问题自动解决能力。
产品特色:
• 定位(Localization):Agentless采用分层方法定位故障到特定文件、类或函数和细粒度编辑位置。
• 修复(Repair):Agentless根据编辑位置采样多个候选补丁,以简单的diff格式呈现。
• 补丁验证(Patch Validation):Agentless选择回归测试并生成复现测试以复现原始错误,使用测试结果重新排名所有补丁,选择最佳补丁提交。
• 集成Claude 3.5 Sonnet:Agentless与Claude 3.5 Sonnet集成,提高了解决率。
• 支持多文件编辑:Agentless支持对多个文件进行编辑,增强了其修复能力。
• 预提交钩子(Pre-commit hooks):为了代码风格的标准化,Agentless支持预提交钩子。
• 环境设置简单:通过简单的命令行操作即可创建环境并安装所需依赖。
使用教程:
1. 克隆Agentless仓库到本地:使用`git clone https://github.com/OpenAutoCoder/Agentless.git`命令。
2. 进入Agentless目录:使用`cd Agentless`命令。
3. 创建并激活Python虚拟环境:执行`conda create -n agentless python=3.11`和`conda activate agentless`命令。
4. 安装依赖:运行`pip install -r requirements.txt`安装所需依赖。
5. 配置环境变量:执行`export PYTHONPATH=$PYTHONPATH:$(pwd)`命令。
6. 安装预提交钩子(如需贡献代码):运行`pre-commit install`命令。
7. 导出OpenAI API密钥:设置环境变量`export OPENAI_API_KEY={key_here}`。
8. 运行Agentless:根据具体问题运行Agentless的相应命令。
浏览量:2
最新流量情况
月访问量
4.95m
平均访问时长
00:06:29
每次访问页数
5.68
跳出率
37.69%
流量来源
直接访问
51.66%
自然搜索
33.21%
邮件
0.04%
外链引荐
12.84%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.79%
德国
3.71%
印度
9.03%
俄罗斯
4.40%
美国
18.49%
自动解决软件开发问题的无代理方法
Agentless是一种无需代理的自动解决软件开发问题的方法。它通过定位、修复和补丁验证三个阶段来解决每个问题。Agentless利用分层过程定位故障到特定文件、相关类或函数,以及细粒度的编辑位置。然后,Agentless根据编辑位置采样多个候选补丁,并选择回归测试来运行,生成额外的复现测试以复现原始错误,并使用测试结果重新排名所有剩余补丁,以选择一个提交。Agentless是目前在SWE-bench lite上表现最佳的开源方法,具有82个修复(27.3%的解决率),平均每问题成本0.34美元。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-DPO是Tülu3模型家族中的一员,专注于指令遵循,提供完全开源的数据、代码和配方,旨在作为现代后训练技术的全面指南。该模型专为聊天以外的多样化任务设计,如MATH、GSM8K和IFEval,以达到最先进的性能。模型主要优点包括开源数据和代码、支持多种任务、以及优秀的性能。产品背景信息显示,该模型由Allen AI研究所开发,遵循Llama 3.1社区许可协议,适用于研究和教育用途。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
机器学习工程能力的AI代理评估基准
MLE-bench是由OpenAI推出的一个基准测试,旨在衡量AI代理在机器学习工程方面的表现。该基准测试汇集了75个来自Kaggle的机器学习工程相关竞赛,形成了一套多样化的挑战性任务,测试了训练模型、准备数据集和运行实验等现实世界中的机器学习工程技能。通过Kaggle公开的排行榜数据,为每项竞赛建立了人类基准。使用开源代理框架评估了多个前沿语言模型在该基准上的表现,发现表现最佳的设置——OpenAI的o1-preview配合AIDE框架——在16.9%的竞赛中至少达到了Kaggle铜牌的水平。此外,还研究了AI代理的各种资源扩展形式以及预训练污染的影响。MLE-bench的基准代码已经开源,以促进未来对AI代理机器学习工程能力的理解。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
开源AI代码编辑器,提供强大的AI功能和完全的数据控制。
Void是一个开源的代码编辑器,是Visual Studio Code的分支,它允许用户利用AI工具编写代码,同时完全控制自己的数据。它提供了丰富的AI特性,如自动补全、内联编辑、文件搜索和生成等。此外,它还支持本地模型托管和直接与大型语言模型通信,无需通过中间人。Void的定位是为开发者提供一个高效、安全且功能丰富的编程环境。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
开源AI代码编辑器,为10倍效率工程师设计。
Melty是一款开源的AI代码编辑器,它能够理解用户从终端到GitHub的操作,并与用户协作编写生产就绪的代码。由Charlie和Jackson开发,他们有着丰富的编程工具使用经验,旨在通过AI技术提高编程效率和代码质量。Melty在28天内已经能够编写其一半的代码,展现了其强大的自适应和学习能力。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
2D游戏动画生成模型
godmodeanimation是一个开源的2D游戏动画生成模型,它通过训练文本到视频和图像到视频的模型来生成2D游戏动画。开发者使用了公共游戏动画数据和3D mixamo模型渲染动画来训练动画生成模型,并开源了模型、训练数据、训练代码和数据生成代码。
AI可观测性和机器学习监控平台
Evidently AI是一个开源的Python库,用于监控机器学习模型,支持从RAGs到AI助手的LLM驱动产品的评估。它提供了数据漂移、数据质量和生产ML模型性能的监控,拥有超过2000万的下载量和5000+的GitHub星标,是机器学习领域中一个值得信赖的监控工具。
9天内预训练的紧凑型大型语言模型
1.5-Pints是一个开源的紧凑型大型语言模型(LLM),它在9天内使用高质量数据进行预训练,旨在成为与Apple OpenELM和Microsoft Phi相当的AI助手。该模型的代码库和架构公开,以促进模型的复制、实验和进一步的开源开发。
一个正在训练中的开源语言模型,具备“听力”能力。
llama3-s是一个开放的、正在进行中的研究实验,旨在将基于文本的大型语言模型(LLM)扩展到具有原生“听力”能力。该项目使用Meta的Chameleon论文启发的技术,专注于令牌传递性,将声音令牌扩展到LLM的词汇表中,未来可能扩展到各种输入类型。作为一个开源科学实验,代码库和数据集都是公开的。
300行代码实现基于LLM的语音转录。
WeST是一个开源的语音识别转录模型,以300行代码的简洁形式,基于大型语言模型(LLM)实现语音到文本的转换。它由一个大型语言模型、一个语音编码器和一个投影器组成,其中仅投影器部分可训练。WeST的开发灵感来源于SLAM-ASR和LLaMA 3.1,旨在通过简化的代码实现高效的语音识别功能。
开源AI搜索引擎,提供网络搜索能力。
OpenPerPlex是一个开源AI搜索引擎,利用尖端技术提供网络搜索功能。它结合了语义分块、结果重排、谷歌搜索集成以及Groq作为推理引擎等技术,支持Llama 3 70B模型,以提高搜索的准确性和效率。
开源框架,支持数据驱动的自适应语言代理。
aiwaves-cn/agents 是一个开源框架,专注于数据驱动的自适应语言代理。它提供了一种系统化框架,通过符号学习训练语言代理,灵感来源于用于训练神经网络的连接主义学习过程。该框架实现了反向传播和基于梯度的权重更新,使用基于语言的损失、梯度和权重,支持多代理系统的优化。
高效准确的气候模拟模型
NeuralGCM是由谷歌研究团队开发的气候模型,与传统基于物理的气候模型相比,它结合了机器学习技术,提高了模拟的准确性和效率。NeuralGCM能够生成2至15天的天气预测,其准确性超过了当前的黄金标准物理模型,并且在重现过去40年的温度数据方面比传统大气模型更为准确。尽管NeuralGCM尚未构建为完整的气候模型,但它标志着开发更强大、更易用气候模型的重要一步。
探索大脑智能的AI项目
Thousand Brains Project是由Jeff Hawkins和Numenta公司发起,旨在通过理解大脑新皮层的工作原理来开发新型的人工智能系统。该项目基于Thousand Brains Theory of Intelligence,提出了与传统AI系统根本不同的大脑工作原理。项目的目标是构建一种高效且强大的智能系统,能够实现人类所具备的智能能力。Numenta公司开放了其研究资源,包括会议记录、代码开源,并建立了一个围绕其算法的大型社区。该项目得到了盖茨基金会等的资金支持,并鼓励全球研究人员参与或加入这一激动人心的项目。
© 2024 AIbase 备案号:闽ICP备08105208号-14