需求人群:
"目标受众为需要对大型语言模型进行微调的研究人员和开发人员。该产品适合他们,因为它提供了一个轻量级、高效的微调解决方案,尤其适用于资源有限或需要特定功能定制的场景。"
使用场景示例:
研究人员使用mistral-finetune微调7B模型,以适应特定的对话系统。
开发人员利用该库为聊天机器人添加新功能,通过微调模型来理解用户查询。
教育机构使用mistral-finetune对学生提交的论文进行自动评分,提高评分效率。
产品特色:
支持基于LoRA的训练范式,只训练模型中的一小部分权重。
推荐使用A100或H100 GPU以获得最大效率。
代码库优化了多GPU单节点训练配置。
提供了详细的安装和使用指南,包括依赖安装、模型下载、数据准备等。
严格的训练数据格式要求,支持jsonl格式数据文件。
支持对话数据和指令跟随数据的训练。
提供了数据验证和格式化工具,确保数据正确性。
使用教程:
克隆代码库到本地环境。
安装所有必需的依赖项。
下载并准备所需的Mistral模型。
根据指南准备训练数据集,确保数据格式正确。
使用提供的工具验证和格式化数据集。
修改配置文件,指定模型路径、数据路径和其他训练参数。
启动训练过程,监控训练进度和性能。
训练完成后,使用mistral-inference进行模型推理测试。
浏览量:31
最新流量情况
月访问量
5.13m
平均访问时长
00:06:32
每次访问页数
6.11
跳出率
36.07%
流量来源
直接访问
54.23%
自然搜索
31.90%
邮件
0.04%
外链引荐
11.74%
社交媒体
1.91%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.57%
德国
3.83%
印度
10.07%
俄罗斯
4.92%
美国
18.64%
轻量级代码库,用于高效微调Mistral模型。
mistral-finetune是一个轻量级的代码库,它基于LoRA训练范式,允许在冻结大部分权重的情况下,只训练1-2%的额外权重,以低秩矩阵微扰的形式进行微调。它被优化用于多GPU单节点训练设置,对于较小模型,例如7B模型,单个GPU就足够了。该代码库旨在提供简单、有指导意义的微调入口,特别是在数据格式化方面,并不旨在涵盖多种模型架构或硬件类型。
一种用于扩散变换器的上下文LoRA微调技术
In-Context LoRA是一种用于扩散变换器(DiTs)的微调技术,它通过结合图像而非仅仅文本,实现了在保持任务无关性的同时,对特定任务进行微调。这种技术的主要优点是能够在小数据集上进行有效的微调,而不需要对原始DiT模型进行任何修改,只需改变训练数据即可。In-Context LoRA通过联合描述多张图像并应用任务特定的LoRA微调,生成高保真度的图像集合,更好地符合提示要求。该技术对于图像生成领域具有重要意义,因为它提供了一种强大的工具,可以在不牺牲任务无关性的前提下,为特定任务生成高质量的图像。
多LoRA组合图像生成技术
Multi-LoRA Composition是一种用于图像生成的先进技术,它通过组合多个低秩适配器(LoRA)来生成高质量的图像。这种方法在保持模型大小的同时,提高了图像的细节和多样性。
快速轻松地从视频中训练高质量的LoRA模型
One Shot LoRA 是一个专注于从视频中快速训练 LoRA 模型的在线平台。它利用先进的机器学习技术,能够将视频内容高效转化为 LoRA 模型,为用户提供快速、便捷的模型生成服务。该产品的主要优点是操作简单、无需登录且隐私安全。它无需用户上传私人数据,也不存储或收集任何用户信息,确保用户数据的私密性和安全性。该产品主要面向需要快速生成 LoRA 模型的用户,如设计师、开发者等,帮助他们快速获取所需的模型资源,提升工作效率。
快速训练和微调大型语言模型
Unsloth 是一个旨在提高大型语言模型(LLMs)训练和微调速度的平台。它通过手动推导所有计算密集型数学步骤并手写GPU内核,实现了无需硬件更改即可显著加快训练速度。Unsloth 支持多种GPU,包括NVIDIA、AMD和Intel,并提供开源版本供用户在Google Colab或Kaggle Notebooks上免费试用。它还提供了不同级别的定价方案,包括免费版、Pro版和企业版,以满足不同用户的需求。
帮助客户发现全球公有云厂商可用的GPU实例
GPU Finder是一个帮助客户发现全球公有云厂商可用的GPU实例的平台。通过GPU Finder,用户可以快速查找各大公有云厂商提供的GPU实例,并比较它们的价格、配置和性能等信息,从而选择最适合自己需求的GPU实例。无论是进行机器学习、深度学习、图像处理还是科学计算,GPU Finder都能帮助用户快速找到合适的GPU实例。平台上提供了丰富的过滤和排序功能,让用户可以根据自己的需求进行精准的筛选,从而节省时间和成本。无论是初学者还是有经验的开发者,都可以轻松使用GPU Finder来发现和租用合适的GPU实例。
领先的AI创作者社区
魔多AI是一个专注于AI创作的社区平台,提供多种AI模型和创作工具,支持用户进行插画、动漫、写实等多种风格的图像创作。该平台通过LoRA训练和FLUX技术,让用户能够轻松地创作出高质量的图像作品。魔多AI的背景是杭州厚德云计算有限公司,旨在通过AI技术推动创意产业的发展,其主要优点包括易用性、高效性和创新性。目前,魔多AI提供免费试用和付费服务,定位于广大的图像创作者和设计师。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
简洁的FLUX LoRA训练UI,支持低VRAM配置。
Flux Gym是一个为FLUX LoRA模型训练设计的简洁Web UI,特别适合只有12GB、16GB或20GB VRAM的设备使用。它结合了AI-Toolkit项目的易用性和Kohya Scripts的灵活性,使得用户无需复杂的终端操作即可进行模型训练。Flux Gym支持用户通过简单的界面上传图片和添加描述,然后启动训练过程。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
租用云GPU,从0.2美元/小时起
RunPod是一个可扩展的云GPU基础设施,用于训练和推理。你可以租用云GPU,从0.2美元/小时起,支持TensorFlow、PyTorch和其他AI框架。我们提供可信赖的云服务、免费带宽、多种GPU选项、服务器端点和AI端点,适用于各种场景。
高效灵活的大规模模型微调工具包
XTuner是一个为大型模型(如InternLM, Llama, Baichuan, Qwen, ChatGLM)设计的高效、灵活且功能齐全的微调工具包。它支持在几乎所有GPU上进行LLM和VLM的预训练和微调,能够自动调度高性能操作,如FlashAttention和Triton内核,以提高训练吞吐量。XTuner与DeepSpeed兼容,支持多种ZeRO优化技术。它还支持各种LLMs和VLM(如LLaVA),并设计了良好的数据管道,能够适应任何格式的数据集。此外,XTuner支持多种训练算法,包括QLoRA、LoRA和全参数微调,使用户能够选择最适合其需求的解决方案。
通过LoRA技术生成现实与插画风格混合的图像。
FLUX.1-dev-LoRA-blended-realistic-illustration是一个基于LoRA技术的AI图像生成模型,由Muertu训练,专注于将卡通风格的人物与现实背景相结合,创造出独特的混合现实艺术效果。该模型在图像生成领域具有创新性,能够为艺术家和设计师提供新的创作工具,同时为图像处理和艺术创作提供新的视角。模型遵循flux-1-dev-non-commercial-license,适用于非商业用途。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
提供多种预训练模型,支持多维度筛选,助力AI模型应用与开发。
该平台是一个专注于AI预训练模型的资源平台,整合了大量不同类型、规模和应用场景的预训练模型。其重要性在于为AI开发者和研究人员提供了便捷的模型获取渠道,降低了模型开发的门槛。主要优点包括模型分类细致、多维度筛选功能强大、信息展示详细且提供智能推荐。产品背景是随着AI技术的发展,对预训练模型的需求日益增长,平台应运而生。平台主要定位为AI模型资源平台,部分模型免费商用,部分可能需要付费,具体价格因模型而异。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
Lora 是一个为移动设备优化的本地语言模型,支持 iOS 和 Android 平台。
Lora 是一款为移动设备优化的本地语言模型,通过其 SDK 可以快速集成到移动应用中。它支持 iOS 和 Android 平台,性能与 GPT-4o-mini 相当,拥有 1.5GB 大小和 24 亿参数,专为实时移动推理进行了优化。Lora 的主要优点包括低能耗、轻量化和快速响应,相比其他模型,它在能耗、体积和速度上都有显著优势。Lora 由 PeekabooLabs 提供,主要面向开发者和企业客户,帮助他们快速将先进的语言模型能力集成到移动应用中,提升用户体验和应用竞争力。
训练属于你的文本大模型,独立部署
Modihand是一个训练属于你的文本大模型的平台,无需专业知识,只需要准备好训练数据,即可训练出专属于你的文本大模型。内置市面上大多数的开源模型,支持多种微调训练方式,性价比高,独立可部署,推理 API 支持,提供更多问题解决支持。
为您的工作流程选择合适的云GPU供应商。
Cloud GPUs是一个网站,帮助您比较和选择适合您工作流程的云GPU供应商。该网站列出了多家云GPU提供商及其GPU型号和价格,方便您快速找到合适的GPU资源。无论您是进行机器学习训练、科学计算还是图形渲染,Cloud GPUs都能为您推荐高性能且经济实惠的云GPU解决方案。
AI创新的优化计算赋能者
LLM GPU Helper 是一个专注于人工智能领域的在线平台,提供GPU内存计算、模型推荐和大模型知识库访问等服务。它通过量身定制的建议和专家知识,帮助企业加速AI应用,深受超过3500名用户的信赖,并获得了5.0的高评分。平台的主要优点包括高准确度的GPU内存计算器、个性化的模型推荐、全面的知识库访问以及对小型企业和初创公司的特别支持。
TensorPool 是一个简化机器学习模型训练的云 GPU 平台。
TensorPool 是一个专注于简化机器学习模型训练的云 GPU 平台。它通过提供一个直观的命令行界面(CLI),帮助用户轻松描述任务并自动处理 GPU 的编排和执行。TensorPool 的核心技术包括智能的 Spot 节点恢复技术,能够在抢占式实例被中断时立即恢复作业,从而结合了抢占式实例的成本优势和按需实例的可靠性。此外,TensorPool 还通过实时多云分析选择最便宜的 GPU 选项,用户只需为实际执行时间付费,无需担心闲置机器带来的额外成本。TensorPool 的目标是让开发者无需花费大量时间配置云提供商,从而提高机器学习工程的速度和效率。它提供个人计划和企业计划,个人计划每周提供 $5 的免费信用额度,而企业计划则提供更高级的支持和功能。
统一的代码库,用于微调大型多模态模型
lmms-finetune是一个统一的代码库,旨在简化大型多模态模型(LMMs)的微调过程。它提供了一个结构化的框架,允许用户轻松集成最新的LMMs并进行微调,支持全微调和lora等策略。代码库设计简单轻量,易于理解和修改,支持包括LLaVA-1.5、Phi-3-Vision、Qwen-VL-Chat、LLaVA-NeXT-Interleave和LLaVA-NeXT-Video等多种模型。
© 2025 AIbase 备案号:闽ICP备08105208号-14