需求人群:
"Lora 适合希望在移动应用中集成先进语言模型能力的开发者和企业客户。它可以帮助他们快速开发出具有智能交互功能的应用,提升应用的竞争力和用户体验。无论是聊天机器人、智能助手还是其他需要自然语言处理功能的应用场景,Lora 都能提供强大的支持。"
使用场景示例:
在移动聊天应用中集成 Lora,为用户提供智能聊天功能
将 Lora 应用于智能助手应用,实现语音交互和信息查询
在教育类应用中利用 Lora 提供智能辅导和答疑功能
产品特色:
支持 iOS 和 Android 平台,兼容性强
性能与 GPT-4o-mini 相当,拥有 24 亿参数,满足多种需求
1.5GB 大小,轻量化设计,便于在移动设备上部署
能耗低,相比其他模型更节能,延长设备使用时间
响应速度快,实时移动推理能力出色,提升用户体验
通过 SDK 快速集成到移动应用中,简化开发流程
使用教程:
1. 访问 Lora 官方网站,了解产品详情和集成文档
2. 注册并获取 Lora SDK,根据文档指引进行集成
3. 在移动应用中调用 Lora 提供的语言模型接口
4. 测试应用功能,确保 Lora 集成后运行正常
5. 发布应用,让用户享受 Lora 带来的智能交互体验
浏览量:73
Lora 是一个为移动设备优化的本地语言模型,支持 iOS 和 Android 平台。
Lora 是一款为移动设备优化的本地语言模型,通过其 SDK 可以快速集成到移动应用中。它支持 iOS 和 Android 平台,性能与 GPT-4o-mini 相当,拥有 1.5GB 大小和 24 亿参数,专为实时移动推理进行了优化。Lora 的主要优点包括低能耗、轻量化和快速响应,相比其他模型,它在能耗、体积和速度上都有显著优势。Lora 由 PeekabooLabs 提供,主要面向开发者和企业客户,帮助他们快速将先进的语言模型能力集成到移动应用中,提升用户体验和应用竞争力。
优化的小型语言模型,适用于移动设备
MobileLLM是一种针对移动设备优化的小型语言模型,专注于设计少于十亿参数的高质量LLMs,以适应移动部署的实用性。与传统观念不同,该研究强调了模型架构在小型LLMs中的重要性。通过深度和薄型架构,结合嵌入共享和分组查询注意力机制,MobileLLM在准确性上取得了显著提升,并提出了一种不增加模型大小且延迟开销小的块级权重共享方法。此外,MobileLLM模型家族在聊天基准测试中显示出与之前小型模型相比的显著改进,并在API调用任务中接近LLaMA-v2 7B的正确性,突出了小型模型在普通设备用例中的能力。
自主多模移动设备代理
Mobile-Agent是一款自主多模移动设备代理,利用多模大语言模型(MLLM)技术,首先利用视觉感知工具准确识别和定位应用程序前端界面中的视觉和文字元素。基于感知的视觉环境,它自主规划和分解复杂操作任务,并通过逐步操作来导航移动应用程序。与之前依赖于应用程序的XML文件或移动系统元数据的解决方案不同,Mobile-Agent以视觉为中心的方式在各种移动操作环境中具有更大的适应性,从而消除了对特定系统定制的必要性。为了评估Mobile-Agent的性能,我们引入了Mobile-Eval,这是一个用于评估移动设备操作的基准。基于Mobile-Eval,我们对Mobile-Agent进行了全面评估。实验结果表明,Mobile-Agent实现了显着的准确性和完成率。即使在具有挑战性的指令下,例如多应用程序操作,Mobile-Agent仍然可以完成要求。
为边缘设备定制的小型语言模型
MobiLlama是一个为资源受限设备设计的小型语言模型(SLM),它旨在提供准确且轻量级的解决方案,以满足设备上的处理需求、能效、低内存占用和响应效率。MobiLlama从更大的模型出发,通过精心设计的参数共享方案来降低预训练和部署成本。
先进的小型语言模型,专为设备端应用设计。
Zamba2-mini是由Zyphra Technologies Inc.发布的小型语言模型,专为设备端应用设计。它在保持极小的内存占用(<700MB)的同时,实现了与更大模型相媲美的评估分数和性能。该模型采用了4bit量化技术,具有7倍参数下降的同时保持相同性能的特点。Zamba2-mini在推理效率上表现出色,与Phi3-3.8B等更大模型相比,具有更快的首令牌生成时间、更低的内存开销和更低的生成延迟。此外,该模型的权重已开源发布(Apache 2.0),允许研究人员、开发者和公司利用其能力,推动高效基础模型的边界。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
高效、轻量级的量化Llama模型,提升移动设备上的运行速度并减少内存占用。
Llama模型是Meta公司推出的大型语言模型,通过量化技术,使得模型体积更小、运行速度更快,同时保持了模型的质量和安全性。这些模型特别适用于移动设备和边缘部署,能够在资源受限的设备上提供快速的设备内推理,同时减少内存占用。量化Llama模型的开发,标志着在移动AI领域的一个重要进步,使得更多的开发者能够在不需要大量计算资源的情况下,构建和部署高质量的AI应用。
Octopus-V2-2B是一款在移动设备上运行的2B LLMs,性能优于GPT-4
Octopus-V2-2B是由斯坦福大学NexaAI开发的开源大型语言模型,具有20亿参数,专门为Android API的功能调用定制。它采用了独特的功能性标记策略,用于训练和推理阶段,使其达到与GPT-4相当的性能水平,并提高了推理速度。Octopus-V2-2B特别适合边缘计算设备,能够在设备上直接运行,支持广泛的应用场景。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
高效优化的小型语言模型,专为设备端应用设计。
MobileLLM-125M是由Meta开发的自动回归语言模型,它利用优化的变换器架构,专为资源受限的设备端应用而设计。该模型集成了包括SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等多项关键技术。MobileLLM-125M/350M在零样本常识推理任务上相较于前代125M/350M SoTA模型分别取得了2.7%和4.3%的准确率提升。该模型的设计理念可有效扩展到更大模型,MobileLLM-600M/1B/1.5B均取得了SoTA结果。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
Ai2 OLMoE 是一款可在 iOS 设备上运行的开源语言模型应用
OLMoE 是由 Ai2 开发的开源语言模型应用,旨在为研究人员和开发者提供一个完全开放的工具包,用于在设备上进行人工智能实验。该应用支持在 iPhone 和 iPad 上离线运行,确保用户数据完全私密。它基于高效的 OLMoE 模型构建,通过优化和量化,使其在移动设备上运行时保持高性能。该应用的开源特性使其成为研究和开发新一代设备端人工智能应用的重要基础。
高效能的语言模型,支持本地智能和设备端计算。
Ministral-8B-Instruct-2410是由Mistral AI团队开发的一款大型语言模型,专为本地智能、设备端计算和边缘使用场景设计。该模型在类似的大小模型中表现优异,支持128k上下文窗口和交错滑动窗口注意力机制,能够在多语言和代码数据上进行训练,支持函数调用,词汇量达到131k。Ministral-8B-Instruct-2410模型在各种基准测试中表现出色,包括知识与常识、代码与数学以及多语言支持等方面。该模型在聊天/竞技场(gpt-4o判断)中的性能尤为突出,能够处理复杂的对话和任务。
高效小型语言模型
SmolLM是一系列最新的小型语言模型,包含135M、360M和1.7B参数的版本。这些模型在精心策划的高质量训练语料库上进行训练,能够实现在本地设备上运行,显著降低推理成本并提高用户隐私。SmolLM模型在多种基准测试中表现优异,测试了常识推理和世界知识。
汇总和比较全球主要AI模型提供商的价格信息
AIGCRank大语言模型API价格对比是一个专门汇总和比较全球主要AI模型提供商的价格信息的工具。它为用户提供最新的大语言模型(LLM)的价格数据,包括一些免费的AI大模型API。通过这个平台,用户可以轻松查找和比较OpenAI、Claude、Mixtral、Kimi、星火大模型、通义千问、文心一语、Llama 3、GPT-4、AWS和Google等国内外主要API提供商的最新价格,确保找到最适合自己项目的模型定价。
vivo自主研发的智能语言理解模型
蓝心大模型是vivo自主研发的智能语言理解模型,具有70亿模型参数量,可以处理32K上下文长度。它基于260TB的多语言训练语料,拥有强大的语言理解能力,可以广泛应用于内容创作、知识问答、逻辑推理、代码生成等场景,持续为用户提供安全可靠的人机交互体验。该模型已通过严格的安全合规检测,输出结果安全合规。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
检测设备是否能运行不同规模的 DeepSeek 模型,提供兼容性预测。
DeepSeek 模型兼容性检测是一个用于评估设备是否能够运行不同规模 DeepSeek 模型的工具。它通过检测设备的系统内存、显存等配置,结合模型的参数量、精度位数等信息,为用户提供模型运行的预测结果。该工具对于开发者和研究人员在选择合适的硬件资源以部署 DeepSeek 模型时具有重要意义,能够帮助他们提前了解设备的兼容性,避免因硬件不足而导致的运行问题。DeepSeek 模型本身是一种先进的深度学习模型,广泛应用于自然语言处理等领域,具有高效、准确的特点。通过该检测工具,用户可以更好地利用 DeepSeek 模型进行项目开发和研究。
面向生成场景的可控大语言模型
孟子生成式大模型(孟子 GPT)是一个面向生成场景的可控大语言模型,能够通过多轮的方式帮助用户完成特定场景中的多种工作任务。它支持知识问答、多语言翻译、通用写作和金融场景任务等功能,具有更可控、更灵活、更个性、更专业的优势。具体定价和使用方式请咨询官方网站。
WeLM Playground是一款开源的大型中文语言模型聊天工具
WeLM Playground是基于开源中文语言模型WeLM的在线聊天 Demo,用户可以通过网页与 AI 对话、获取写作帮助。它提供稳定流畅的语言生成,支持自由聊天、话题控制、长篇闲聊、文本续写等功能。作为 Anthropic 公司开源的大模型之一,WeLM Playground 完全免费,代码开源,用户无需注册即可使用。它旨在让普通用户也能安全便捷地体验 LLM 对话带来的便利。
为边缘设备提供无代码人工智能
Neuton TinyML 是一款无代码人工智能平台,可自动构建极小模型并嵌入到任何微控制器和传感器中。它基于专利神经网络框架,能够在保持准确性的同时实现极小的模型大小。
Google推出的一系列轻量级、先进的开放式模型
Gemma是Google推出的一系列开源的轻量级语言模型系列。它结合了全面的安全措施,在尺寸上实现了优异的性能,甚至超过了一些较大的开放模型。可以无缝兼容各种框架。提供快速入门指南、基准测试、模型获取等,帮助开发者负责任地开发AI应用。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
快速准确的边缘设备自动语音识别模型
Moonshine 是一系列为资源受限设备优化的语音转文本模型,非常适合实时、设备上的应用程序,如现场转录和语音命令识别。在 HuggingFace 维护的 OpenASR 排行榜中使用的测试数据集上,Moonshine 的词错误率(WER)优于同样大小的 OpenAI Whisper 模型。此外,Moonshine 的计算需求随着输入音频的长度而变化,这意味着较短的输入音频处理得更快,与 Whisper 模型不同,后者将所有内容都作为 30 秒的块来处理。Moonshine 处理 10 秒音频片段的速度是 Whisper 的 5 倍,同时保持相同或更好的 WER。
© 2025 AIbase 备案号:闽ICP备08105208号-14