需求人群:
"OLMoE 适用于研究人员、开发者以及对开源语言模型感兴趣的用户。它为研究人员提供了一个研究和改进设备端模型的平台,为开发者提供了一个开发和测试新 AI 应用的工具。对于普通用户来说,它提供了一种安全、私密的方式来体验最新的语言模型技术。"
使用场景示例:
研究人员可以利用 OLMoE 研究如何提高设备端模型的效率和性能
开发者可以将 OLMoE 集成到自己的 iOS 应用中,为用户提供离线 AI 功能
用户可以在 iPhone 上使用 OLMoE 进行文本生成和问答,无需联网
产品特色:
在 iPhone 和 iPad 上提供离线语言模型体验
支持用户在本地测试和优化自己的模型
允许开发者将 OLMoE 集成到其他 iOS 应用中
通过量化技术优化模型性能,确保在移动设备上的高效运行
提供完全开源的代码,便于研究人员和开发者进行二次开发
支持多种自然语言处理任务,如文本生成、问答等
通过隐私保护设计,确保用户数据不离开设备
提供与社区互动的平台,如 Discord 服务器,方便用户交流和分享
使用教程:
1. 访问 Apple App Store 下载 OLMoE 应用
2. 安装完成后打开应用,选择要使用的模型
3. 输入提示文本,应用将生成相应的回答
4. 开发者可以访问 GitHub 仓库获取源代码,并进行本地开发和测试
5. 研究人员可以利用开源代码研究模型优化和改进方法
浏览量:19
最新流量情况
月访问量
229.29k
平均访问时长
00:01:11
每次访问页数
2.27
跳出率
50.03%
流量来源
直接访问
37.80%
自然搜索
51.62%
邮件
0.11%
外链引荐
8.12%
社交媒体
2.13%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
瑞士
3.00%
中国
3.22%
印度
4.49%
俄罗斯
2.98%
美国
43.87%
Ai2 OLMoE 是一款可在 iOS 设备上运行的开源语言模型应用
OLMoE 是由 Ai2 开发的开源语言模型应用,旨在为研究人员和开发者提供一个完全开放的工具包,用于在设备上进行人工智能实验。该应用支持在 iPhone 和 iPad 上离线运行,确保用户数据完全私密。它基于高效的 OLMoE 模型构建,通过优化和量化,使其在移动设备上运行时保持高性能。该应用的开源特性使其成为研究和开发新一代设备端人工智能应用的重要基础。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
先进的小型语言模型,专为设备端应用设计。
Zamba2-mini是由Zyphra Technologies Inc.发布的小型语言模型,专为设备端应用设计。它在保持极小的内存占用(<700MB)的同时,实现了与更大模型相媲美的评估分数和性能。该模型采用了4bit量化技术,具有7倍参数下降的同时保持相同性能的特点。Zamba2-mini在推理效率上表现出色,与Phi3-3.8B等更大模型相比,具有更快的首令牌生成时间、更低的内存开销和更低的生成延迟。此外,该模型的权重已开源发布(Apache 2.0),允许研究人员、开发者和公司利用其能力,推动高效基础模型的边界。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
下一代本地优先的大型语言模型(LLMs)
anime.gf 是由 moecorp 发起的下一代本地优先的大型语言模型(LLMs),目前正处于积极开发阶段。它代表了一种新兴的本地化和开源的人工智能技术,旨在提供更高效、更个性化的用户体验。
泰勒AI帮助您的工程师训练模型。
Taylor AI是一个平台,可以使您的工程团队在不需要设置GPU和解密复杂库的情况下训练语言模型。它允许您按照自己的条件训练和部署开源语言模型,让您拥有完全的控制权和数据隐私。使用Taylor AI,您可以摆脱按标记付费的定价方式,自由地部署和与您的AI模型交互。它简化了训练和优化语言模型的过程,让您的团队可以专注于构建和迭代。Taylor AI始终跟上最新的开源模型,确保您可以使用最先进的语言模型进行训练。根据您独特的合规和安全标准安全地部署您的模型。
开源 13B 大规模语言模型
百川 - 13B 是由百川智能开发的开源可商用的大规模语言模型,参数量达到 130 亿,训练数据量达到 1.4 万亿 tokens。该模型支持中英双语,具有高质量的预测和对话能力。模型支持量化部署和 CPU 推理,并在多个基准测试中取得优秀结果。可以广泛应用于自然语言处理领域的任务,如问答系统、对话系统、文本生成等。
开源 AI 语言模型
Llama 2 是我们的下一代开源大型语言模型,提供免费的研究和商业使用。它具有强大的功能和性能,通过与外部合作伙伴和内部团队的测试,不断提升安全性和性能。Llama 2 支持广泛的使用场景,是解决难题和推动创新的理想选择。
R1 1776是一个开源的大型语言模型,旨在提供无偏见、准确且事实性的信息。
R1 1776是DeepSeek-R1模型的一个版本,经过后训练以去除偏见和审查,提供准确、无偏见的信息。该模型在处理敏感话题时表现出色,能够提供基于事实的分析和回答。其后训练过程专注于收集与被审查话题相关的高质量数据,并通过多语言审查分类器筛选用户提示,确保模型能够自由地处理各种敏感问题。该模型的开源性质使其在学术研究、内容创作和信息检索等领域具有重要价值。
SkyReels V1 是一个开源的人类中心视频基础模型,专注于高质量影视级视频生成。
SkyReels V1 是一个基于 HunyuanVideo 微调的人类中心视频生成模型。它通过高质量影视片段训练,能够生成具有电影级质感的视频内容。该模型在开源领域达到了行业领先水平,尤其在面部表情捕捉和场景理解方面表现出色。其主要优点包括开源领先性、先进的面部动画技术和电影级光影美学。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等,具有广泛的应用前景。
一个提供历史记录保存和对话延续功能的智能问答平台。
Rabbithole是一个智能问答平台,用户可以登录后保存自己的提问和对话历史,随时回顾和继续之前的讨论。它强调对话的连续性和个性化体验,适合需要长期知识积累和深度交流的用户。从技术角度看,它可能利用了自然语言处理和人工智能技术来实现智能问答,其主要优点是方便用户管理和回顾信息,提升知识获取的效率。
隐私优先的AI会议助手,自动记录会议笔记,提升会议效率。
Meetily是一款专注于提升会议效率的AI工具,通过实时音频捕捉和转录,自动生成会议总结和行动项。其核心优势在于隐私保护,所有处理均在本地完成,确保数据安全。此外,它采用开源AI模型,成本效益高,适合对隐私和成本敏感的企业或个人使用。Meetily提供多种部署方式,包括免费的自托管版本和付费的专业版,满足不同用户的需求。
OpenThinker-32B 是一款强大的开源推理模型,专为提升开放数据推理能力而设计。
OpenThinker-32B 是由 Open Thoughts 团队开发的一款开源推理模型。它通过扩展数据规模、验证推理路径和扩展模型大小来实现强大的推理能力。该模型在数学、代码和科学等推理基准测试中表现卓越,超越了现有的开放数据推理模型。其主要优点包括开源数据、高性能和可扩展性。该模型基于 Qwen2.5-32B-Instruct 进行微调,并在大规模数据集上训练,旨在为研究人员和开发者提供强大的推理工具。
Xyne 是一款开源的、以 AI 为先的搜索与答案引擎,专为工作场景设计。
Xyne 是一款面向工作场景的 AI 驱动的搜索与答案引擎。它能够整合企业内部的各种应用数据,提供精准的信息检索和答案生成服务。Xyne 的核心技术包括语义图谱和基于上下文的检索增强(RAG),能够理解知识、人员、沟通和项目之间的关系,从而提供更全面的搜索结果。其主要优点包括开源、隐私保护、灵活部署(本地、云端或设备端)以及与现有权限体系的无缝兼容。Xyne 定位为一个隐私优先、开源的工作 AI 平台,适合需要高效信息检索和知识管理的企业和团队。
Huginn-0125是一个35亿参数的潜变量循环深度模型,擅长推理和代码生成。
Huginn-0125是一个由马里兰大学帕克分校Tom Goldstein实验室开发的潜变量循环深度模型。该模型拥有35亿参数,经过8000亿个token的训练,在推理和代码生成方面表现出色。其核心特点是通过循环深度结构在测试时动态调整计算量,能够根据任务需求灵活增加或减少计算步骤,从而在保持性能的同时优化资源利用。该模型基于开源的Hugging Face平台发布,支持社区共享和协作,用户可以自由下载、使用和进一步开发。其开源性和灵活的架构使其成为研究和开发中的重要工具,尤其是在资源受限或需要高性能推理的场景中。
开源的工业级普通话自动语音识别模型,支持多种应用场景。
FireRedASR 是一个开源的工业级普通话自动语音识别模型,采用 Encoder-Decoder 和 LLM 集成架构。它包含两个变体:FireRedASR-LLM 和 FireRedASR-AED,分别针对高性能和高效能需求设计。该模型在普通话基准测试中表现出色,同时在方言和英文语音识别上也有良好表现。它适用于需要高效语音转文字的工业级应用,如智能助手、视频字幕生成等。模型开源,便于开发者集成和优化。
本地运行的AI模型训练与部署工具,支持个性化训练和多平台使用。
Kolosal AI 是一款用于本地设备训练和运行大型语言模型(LLMs)的工具。它通过简化模型训练、优化和部署流程,使用户能够在本地设备上高效地使用 AI 技术。该工具支持多种硬件平台,提供快速的推理速度和灵活的定制能力,适合从个人开发者到大型企业的广泛应用场景。其开源特性也使得用户可以根据自身需求进行二次开发。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
本地运行的人工智能代理,无缝自动化工程任务。
Codename Goose 是一款本地运行的人工智能代理工具,旨在帮助开发者高效完成工程任务。它强调开源和本地运行,确保用户对任务执行有完全控制权。通过连接外部服务器或API,Goose 可以根据用户需求进行扩展,实现复杂任务的自动化处理,从而让开发者专注于更重要的工作。Goose 的开源特性鼓励开发者参与贡献和创新,其本地运行的模式保障了数据隐私和任务执行效率。
Xwen-Chat是专注中文对话的大语言模型集合,提供多版本模型及语言生成服务
Xwen-Chat由xwen-team开发,为满足高质量中文对话模型需求而生,填补领域空白。其有多个版本,具备强大语言理解与生成能力,可处理复杂语言任务,生成自然对话内容,适用于智能客服等场景,在Hugging Face平台免费提供。
开源的深度研究工具,旨在通过开源框架复现类似Deep Research的功能
Open-source DeepResearch 是一个开源项目,旨在通过开源的框架和工具复现类似 OpenAI Deep Research 的功能。该项目基于 Hugging Face 平台,利用开源的大型语言模型(LLM)和代理框架,通过代码代理和工具调用实现复杂的多步推理和信息检索。其主要优点是开源、可定制性强,并且能够利用社区的力量不断改进。该项目的目标是让每个人都能在本地运行类似 DeepResearch 的智能代理,使用自己喜爱的模型,并且完全本地化和定制化。
结合DeepSeek R1推理能力和Claude创造力及代码生成能力的统一API和聊天界面。
DeepClaude是一个强大的AI工具,旨在将DeepSeek R1的推理能力与Claude的创造力和代码生成能力相结合,通过统一的API和聊天界面提供服务。它利用高性能的流式API(用Rust编写)实现即时响应,同时支持端到端加密和本地API密钥管理,确保用户数据的隐私和安全。该产品是完全开源的,用户可以自由贡献、修改和部署。其主要优点包括零延迟响应、高度可配置性以及支持用户自带密钥(BYOK),为开发者提供了极大的灵活性和控制权。DeepClaude主要面向需要高效代码生成和AI推理能力的开发者和企业,目前处于免费试用阶段,未来可能会根据使用量收费。
一个开源的聊天应用,使用Exa的API进行网络搜索,结合Deepseek R1进行推理。
Exa & Deepseek Chat App是一个开源的聊天应用,旨在通过Exa的API进行实时网络搜索,并结合Deepseek R1语言模型进行推理,以提供更准确的聊天体验。该应用基于Next.js、TailwindCSS和TypeScript构建,使用Vercel进行托管。它允许用户在聊天中获取最新的网络信息,并通过强大的语言模型进行智能对话。该应用免费开源,适合开发者和企业用户使用,可作为聊天工具的开发基础。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
将问题和表单转化为个性化聊天AI,获取即时见解并生成病毒式内容
Yapz 是一个基于人工智能的平台,能够将问题和表单转化为个性化的聊天AI。其核心功能是通过与用户的互动,快速获取信息并将其转化为有价值的见解和内容。该技术的重要性在于,它能够帮助企业或个人以更高效的方式收集和分析数据,同时通过生成病毒式内容来扩大影响力。Yapz 由 datarockets 和 collabs 共同打造,致力于保护用户隐私。目前尚不清楚其具体价格和定位,但从其功能来看,可能主要面向需要高效收集信息和内容创作的用户群体。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14