需求人群:
"适用于需要快速训练和微调大型语言模型的开发者和企业"
使用场景示例:
在24小时内训练自己的ChatGPT模型
使用Unsloth Pro在多GPU系统上进行全训练,提高训练速度和准确性
企业用户可以利用Unsloth Enterprise的定制预训练模型和无限支持
产品特色:
支持单GPU和多GPU系统
与Flash Attention 2 (FA2)相比,单GPU快10倍,多GPU系统快32倍
支持NVIDIA、AMD和Intel GPU
开源版本免费试用
提供Pro版和企业版,包含更多高级功能
浏览量:167
最新流量情况
月访问量
414.27k
平均访问时长
00:01:57
每次访问页数
2.40
跳出率
47.57%
流量来源
直接访问
41.64%
自然搜索
41.52%
邮件
0.19%
外链引荐
12.05%
社交媒体
4.28%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.23%
中国
11.73%
印度
7.77%
韩国
5.44%
美国
23.97%
快速训练和微调大型语言模型
Unsloth 是一个旨在提高大型语言模型(LLMs)训练和微调速度的平台。它通过手动推导所有计算密集型数学步骤并手写GPU内核,实现了无需硬件更改即可显著加快训练速度。Unsloth 支持多种GPU,包括NVIDIA、AMD和Intel,并提供开源版本供用户在Google Colab或Kaggle Notebooks上免费试用。它还提供了不同级别的定价方案,包括免费版、Pro版和企业版,以满足不同用户的需求。
帮助客户发现全球公有云厂商可用的GPU实例
GPU Finder是一个帮助客户发现全球公有云厂商可用的GPU实例的平台。通过GPU Finder,用户可以快速查找各大公有云厂商提供的GPU实例,并比较它们的价格、配置和性能等信息,从而选择最适合自己需求的GPU实例。无论是进行机器学习、深度学习、图像处理还是科学计算,GPU Finder都能帮助用户快速找到合适的GPU实例。平台上提供了丰富的过滤和排序功能,让用户可以根据自己的需求进行精准的筛选,从而节省时间和成本。无论是初学者还是有经验的开发者,都可以轻松使用GPU Finder来发现和租用合适的GPU实例。
在Cloudflare全球网络运行机器学习模型
Workers AI是Cloudflare推出的一款在边缘计算环境中运行机器学习模型的产品。它允许用户在全球范围内的Cloudflare网络节点上部署和运行AI应用,这些应用可以是图像分类、文本生成、目标检测等多种类型。Workers AI的推出标志着Cloudflare在全球网络中部署了GPU资源,使得开发者能够构建和部署接近用户的雄心勃勃的AI应用。该产品的主要优点包括全球分布式部署、低延迟、高性能和可靠性,同时支持免费和付费计划。
Whisper加速器,利用GPU加速语音识别
Whisper Turbo旨在成为OpenAI Whisper API的替代品。它由3部分组成:一个兼容层,用于输入不同格式的音频文件并转换为Whisper兼容格式;开发者友好的API,支持一次性推理和流式模式;以及Rust + WebGPU推理框架Rumble,专门用于跨平台快速推理。
低成本按需GPU,为机器学习和AI任务即时启动
GPUDeploy是一个提供低成本按需GPU资源的网站,专为机器学习和人工智能任务设计,用户可以立即启动预配置的GPU实例,以支持复杂的计算任务。该产品主要优点包括低成本、即时可用性以及预配置的便利性,适合需要快速部署机器学习模型和算法的企业和个人。
TensorPool 是一个简化机器学习模型训练的云 GPU 平台。
TensorPool 是一个专注于简化机器学习模型训练的云 GPU 平台。它通过提供一个直观的命令行界面(CLI),帮助用户轻松描述任务并自动处理 GPU 的编排和执行。TensorPool 的核心技术包括智能的 Spot 节点恢复技术,能够在抢占式实例被中断时立即恢复作业,从而结合了抢占式实例的成本优势和按需实例的可靠性。此外,TensorPool 还通过实时多云分析选择最便宜的 GPU 选项,用户只需为实际执行时间付费,无需担心闲置机器带来的额外成本。TensorPool 的目标是让开发者无需花费大量时间配置云提供商,从而提高机器学习工程的速度和效率。它提供个人计划和企业计划,个人计划每周提供 $5 的免费信用额度,而企业计划则提供更高级的支持和功能。
Apple官方机器学习模型训练框架
Create ML是一个Apple官方发布的机器学习模型训练框架,可以非常方便地在Mac设备上训练Core ML模型。它提供了图像、视频、文本等多种模型类型,用户只需要准备数据集和设置参数,就可以开始模型训练。Create ML还提供了Swift API,支持在iOS等平台进行模型训练。
机器学习加速 API
DirectML 是Windows上的机器学习平台API,为硬件供应商提供了一个通用的抽象层来暴露他们的机器学习加速器。它可以与任何兼容DirectX 12的设备一起使用,包括GPU和NPU。通过减少编写机器学习代码的成本,DirectML使得AI功能集成更加容易。
AI训练入门,超级易用的AI训练平台
训练面板是一个为初学者提供超级易用的AI训练平台。对于高级用户,我们提供可定制的设置。训练面板具有简洁直观的界面,使用户能够轻松地训练自己的AI模型。它支持各种机器学习算法和深度学习框架,包括TensorFlow和PyTorch等。通过训练面板,用户可以通过上传数据集、设置训练参数和监控训练进度来训练和优化自己的AI模型。训练面板还提供模型评估和预测功能,帮助用户评估模型的性能并进行预测。定价灵活,提供免费试用和付费订阅选项。
NVIDIA GPU上加速LLM推理的创新技术
ReDrafter是一种新颖的推测性解码方法,通过结合RNN草稿模型和动态树注意力机制,显著提高了大型语言模型(LLM)在NVIDIA GPU上的推理速度。这项技术通过加速LLM的token生成,减少了用户可能经历的延迟,同时减少了GPU的使用和能源消耗。ReDrafter由Apple机器学习研究团队开发,并与NVIDIA合作集成到NVIDIA TensorRT-LLM推理加速框架中,为使用NVIDIA GPU的机器学习开发者提供了更快的token生成能力。
轻松在远程GPU上运行本地笔记本
Moonglow是一个允许用户在远程GPU上运行本地Jupyter笔记本的服务,无需管理SSH密钥、软件包安装等DevOps问题。该服务由Leila和Trevor创立,Leila曾在Jane Street构建高性能基础设施,而Trevor在斯坦福的Hazy Research Lab进行机器学习研究。
H2O Driverless AI是一个人工智能平台,使用自动化机器学习来减少数据科学工作量。
H2O Driverless AI通过自动化特征工程、模型开发、调参、解释等关键机器学习任务,能显著提高数据科学团队的工作效率。它为各行各业的企业提供了一个可扩展、可定制的数据科学平台,能够应对各种不同的业务需求。
在自己的GPU上免费生成AI图像
NMKD稳定扩散GUI是一个方便的界面工具,可以在自己的硬件上本地运行稳定扩散,这是一个用于从文本生成图像的机器学习工具包。它完全没有审查和过滤,生成的内容我不负责。不会共享/收集任何数据。该工具正在积极开发中,可能会出现一些小问题。 主要功能: - 包含依赖项,无需复杂安装 - 支持文本到图像和图像到图像(图像+文本提示) - 支持基于指令的图像编辑(InstructPix2Pix) - 提示功能:关注/强调,负面提示 - 支持自定义稳定扩散模型和自定义VAE模型 - 同时运行多个提示 - 内置图像查看器,显示生成图像的信息 - 内置超分辨率(RealESRGAN)和人脸修复(CodeFormer或GFPGAN) - 提示队列和提示历史 - 创建无缝(平铺)图像的选项,例如用于游戏纹理 - 支持加载自定义概念(文本反转) - 支持加载LoRA概念/角色/风格 - 各种用户体验功能 - 速度快,取决于您的GPU(RTX 4090每张图像<1秒,RTX 3090每张图像<2秒) - 内置安全措施,扫描下载的模型是否包含恶意软件 - 内置更新工具 系统要求:请参阅GitHub指南 如果您想支持开发,请查看我的Patreon,您还可以获得我最新的视频插帧工具Flowframes。 https://www.patreon.com/platform/iframe?widget=become-patron-button&redirectURI=https%3A%2F%2Fitch.io%2Fgame%2Fedit%2F755540%23published&creatorID=19695417 如果需要帮助或有问题,请加入Discord: https://discord.com/widget?id=777892450232434688&theme=dark 请不要直接私信或@我,如果需要帮助,请使用stable-diffusion-gui频道。
GPUX - 快速运行云GPU
GPUX是一个快速运行云GPU的平台。它提供了高性能的GPU实例,用于运行机器学习工作负载。GPUX支持各种常见的机器学习任务,包括稳定扩散、Blender、Jupyter Notebook等。它还提供了稳定扩散SDXL0.9、Alpaca、LLM和Whisper等功能。GPUX还具有1秒冷启动时间、Shared Instance Storage和ReBar+P2P支持等优势。定价合理,定位于提供高性能GPU实例的云平台。
简化机器学习模型的训练和部署
Sagify是一个命令行工具,可以在几个简单步骤中训练和部署机器学习/深度学习模型在AWS SageMaker上!它消除了配置云实例进行模型训练的痛苦,简化了在云上运行超参数作业的过程,同时不再需要将模型交给软件工程师进行部署。Sagify提供了丰富的功能,包括AWS账户配置、Docker镜像构建、数据上传、模型训练、模型部署等。它适用于各种使用场景,帮助用户快速构建和部署机器学习模型。
开源机器人模拟平台,用于生成无限机器人数据和泛化AI。
ManiSkill是一个领先的开源平台,专注于机器人模拟、无限机器人数据生成和泛化机器人AI。由HillBot.ai领导,该平台支持通过状态和/或视觉输入快速训练机器人,与其它平台相比,ManiSkill/SAPIEN实现了10-100倍的视觉数据收集速度。它支持在GPU上并行模拟和渲染RGB-D,速度高达30,000+FPS。ManiSkill提供了40多种技能/任务和2000多个对象的预构建任务,拥有数百万帧的演示和密集的奖励函数,用户无需自己收集资产或设计任务,可以专注于算法开发。此外,它还支持在每个并行环境中同时模拟不同的对象和关节,训练泛化机器人策略/AI的时间从天缩短到分钟。ManiSkill易于使用,可以通过pip安装,并提供简单灵活的GUI以及所有功能的广泛文档。
NVIDIA H200 NVL GPU,为AI和HPC应用加速
NVIDIA H200 NVL PCIe GPU是基于NVIDIA Hopper架构的最新产品,专为低功耗、风冷企业机架设计,提供灵活的配置以加速各种规模的AI和高性能计算(HPC)工作负载。H200 NVL拥有比NVIDIA H100 NVL更高的内存和带宽,能够更快地微调大型语言模型(llm),并提供高达1.7倍的推理性能提升。此外,H200 NVL还支持NVIDIA NVLink技术,实现GPU间通信速度比第五代PCIe快7倍,满足HPC、大型语言模型推理和微调的需求。H200 NVL还附带了强大的软件工具,包括NVIDIA AI Enterprise,这是一个云原生软件平台,用于开发和部署生产AI。
数据科学与机器学习云平台
Saturn Cloud是一个解决数据科学和机器学习所需复杂基础设施管理和扩展的云平台。它提供了使用R和Python进行数据科学的环境,支持GPU、Dask集群等功能。Saturn Cloud可以帮助数据科学家、数据科学领导者和软件工程师简化开发、部署和数据处理的流程。该产品提供不同的功能和定价计划以满足各种需求。
加速高分辨率扩散模型推理
DistriFusion是一个训练不需要的算法,可以利用多个GPU来加速扩散模型推理,而不会牺牲图像质量。DistriFusion可以根据使用的设备数量减少延迟,同时保持视觉保真度。
在几分钟内构建AI应用程序
PostgresML是一个GPU加速的Postgres数据库,可帮助您快速构建AI应用程序。它简化了AI堆栈的复杂性,让您更快地进入市场。通过PostgresML,您可以使用各种机器学习模型,如文本分类、机器翻译、问题回答等。它还提供了可扩展性、高效性和安全性。了解更多信息,请访问官方网站。
租用云GPU,从0.2美元/小时起
RunPod是一个可扩展的云GPU基础设施,用于训练和推理。你可以租用云GPU,从0.2美元/小时起,支持TensorFlow、PyTorch和其他AI框架。我们提供可信赖的云服务、免费带宽、多种GPU选项、服务器端点和AI端点,适用于各种场景。
高性能AI加速器,专为AI工作负载设计。
Intel® Gaudi® 3 AI Accelerator是英特尔推出的一款高性能人工智能加速器,它基于高效的英特尔® Gaudi® 平台构建,具备出色的MLPerf基准性能,旨在处理要求苛刻的训练和推理任务。该加速器支持数据中心或云中的大型语言模型、多模态模型和企业RAG等人工智能应用程序,能够在您可能已经拥有的以太网基础设施上运行。无论您需要单个加速器还是数千个加速器,英特尔Gaudi 3都可以在您的AI成功中发挥关键作用。
轻松创建你自己的机器学习模型
Teachable Machine是一个基于网页的工具,使用户可以快速轻松地创建机器学习模型,无需专业知识或编码能力。用户只需收集并整理样本数据,Teachable Machine将自动训练模型,然后用户可以测试模型准确性,最后将模型导出使用。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
© 2025 AIbase 备案号:闽ICP备08105208号-14