需求人群:
"目标受众为需要处理大量AI工作负载的企业用户,如数据中心运营商、云服务提供商、AI研究和开发团队。这些用户通常需要高性能、可扩展且成本效率高的解决方案来优化他们的AI应用。"
使用场景示例:
用于大规模语言模型训练,提高训练效率。
在云服务中提供高效的AI推理服务。
用于企业资源规划(ERP)系统中,优化数据处理和分析。
产品特色:
提供高性能AI计算,支持FP8和BF16计算。
与现有的以太网基础设施兼容,无需额外投资专有技术。
提供比H100更多的I/O连接性,优化成本效率。
支持大规模纵向扩展和横向扩展。
支持基于社区的开放软件和行业标准以太网网络。
简化从概念验证到生产的整个过程。
支持使用PyTorch库,便于现有团队使用。
支持现有GPU模型的快速迁移。
使用教程:
1. 访问英特尔官网并查找Intel® Gaudi® 3 AI Accelerator。
2. 根据您的需求选择合适的型号和配置。
3. 通过英特尔Tiber™开发者云或OEM合作伙伴进行购买。
4. 阅读白皮书和开发文档,了解如何部署和使用加速器。
5. 使用英特尔提供的软件工具和资源进行模型迁移和开发。
6. 将加速器集成到现有的数据中心或云基础设施中。
7. 利用加速器进行AI模型的训练和推理任务。
8. 通过英特尔的开发者社区获取支持和最佳实践。
浏览量:13
最新流量情况
月访问量
17395.25k
平均访问时长
00:04:00
每次访问页数
3.45
跳出率
50.30%
流量来源
直接访问
43.21%
自然搜索
51.05%
邮件
0.03%
外链引荐
4.69%
社交媒体
0.91%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
2.65%
中国
5.77%
英国
3.39%
印度
9.49%
美国
27.81%
高性能AI加速器,专为AI工作负载设计。
Intel® Gaudi® 3 AI Accelerator是英特尔推出的一款高性能人工智能加速器,它基于高效的英特尔® Gaudi® 平台构建,具备出色的MLPerf基准性能,旨在处理要求苛刻的训练和推理任务。该加速器支持数据中心或云中的大型语言模型、多模态模型和企业RAG等人工智能应用程序,能够在您可能已经拥有的以太网基础设施上运行。无论您需要单个加速器还是数千个加速器,英特尔Gaudi 3都可以在您的AI成功中发挥关键作用。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
AI加速器,推动人工智能的突破
Graphcore是一家专注于人工智能硬件加速器的公司,其产品主要面向需要高性能计算的人工智能领域。Graphcore的IPU(智能处理单元)技术为机器学习、深度学习等AI应用提供了强大的计算支持。公司的产品包括云端IPU、数据中心IPU以及Bow IPU处理器等,这些产品通过Poplar® Software进行优化,能够显著提升AI模型的训练和推理速度。Graphcore的产品和技术在金融、生物技术、科研等多个行业都有应用,帮助企业和研究机构加速AI项目的实验过程,提高效率。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
Rayscape | 放射学人工智能
Rayscape是一款先进的放射学人工智能解决方案,通过使用前沿的深度学习技术,提高X射线和CT的准确性和效率。我们为肺癌筛查、诊断成像和肿瘤学提供AI辅助诊断。
打造人工智能未来
Anthropic是一款人工智能平台,通过深度学习和自然语言处理等技术,提供先进的人工智能解决方案。我们的产品具有强大的功能和优势,可应用于图像识别、自然语言处理、机器学习等领域。定价灵活合理,定位为帮助用户实现人工智能应用的目标。无论您是开发者、研究人员还是企业,Anthropic都能满足您的需求。
让您的AI助手像人类一样交流
Quickchat AI是一款帮助公司构建自己的多语言AI助手的技术。借助我们的无代码平台和强大的集成功能,公司可以构建会话式AI界面,并将其连接到任何网站、产品、应用、游戏或智能设备。Quickchat AI由生成式AI模型(如GPT-3)驱动,可以实现多语言的自然对话,并提供自动化客户支持、线索生成等功能。
构建最节能的人工智能硬件
Rain AI专注于开发高能效的人工智能硬件。在当前能源消耗日益增长的背景下,Rain AI的产品通过优化硬件设计,减少能源消耗,同时保持高性能,这对于数据中心和需要大量计算资源的企业来说至关重要。产品的主要优点包括高能效、高性能和环保。Rain AI的产品背景信息显示,公司致力于推动人工智能技术的可持续发展,通过技术创新减少对环境的影响。产品的价格和定位尚未明确,但可以推测其目标市场为需要高性能计算且对能源效率有高要求的企业。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
AI云平台,为所有人服务
Kalavai是一个AI云平台,旨在为所有人提供服务。它通过集成各种AI技术,使得用户能够构建、部署和运行AI应用。Kalavai平台的主要优点是其易用性和灵活性,用户无需深入了解复杂的AI技术,即可快速构建自己的AI应用。平台背景信息显示,它支持多种语言和框架,适合不同层次的开发者使用。目前,Kalavai提供免费试用,具体价格和定位需要进一步了解。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
构建视频搜索和摘要代理,提取视频洞察
NVIDIA Video Search and Summarization 是一个利用深度学习和人工智能技术,能够处理大量实时或存档视频,并从中提取信息以进行摘要和交互式问答的模型。该产品代表了视频内容分析和处理技术的最新进展,它通过生成式AI和视频到文本的技术,为用户提供了一种全新的视频内容管理和检索方式。NVIDIA Video Search and Summarization 的主要优点包括高效的视频内容分析、准确的摘要生成和交互式问答能力,这些功能对于需要处理大量视频数据的企业来说至关重要。产品背景信息显示,NVIDIA 致力于通过其先进的AI模型,推动视频内容的智能化处理和分析。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
多语言大型语言模型,支持23种语言
Aya Expanse 32B是由Cohere For AI开发的多语言大型语言模型,拥有32亿参数,专注于提供高性能的多语言支持。它结合了先进的数据仲裁、多语言偏好训练、安全调整和模型合并技术,以支持23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。该模型的发布旨在使社区基础的研究工作更加易于获取,通过发布高性能的多语言模型权重,供全球研究人员使用。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
利用简单视频输入生成富有表现力的角色表演
Act-One 是 Runway Research 推出的一款创新工具,它通过简单的视频输入生成富有表现力的角色表演。这款工具代表了使用生成模型进行表情丰富的真人动作和动画内容的重大进步。Act-One 的技术突破在于,它能够将演员的表演转化为适合动画流水线的3D模型,同时保留情感和细节。与传统的面部动画流程相比,Act-One 使用的流程完全由演员的表演驱动,无需额外设备。Act-One 的出现为创造性角色设计和动画开辟了新的可能性,它能够准确翻译表演到与原始源视频比例不同的角色上,并且能够在不同的摄像机角度下保持高保真度的面部动画。此外,Act-One 还承诺负责任的开发和部署,包括内容审核和安全预防措施。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
用于双手操作的扩散基础模型
RDT-1B是一个参数量达到1B(目前最大)的模仿学习扩散变换器,预训练在超过1M(目前最大)的多机器人情节上。给定语言指令和多达三个视图的RGB图像,RDT可以预测接下来的64个机器人动作。RDT与几乎所有现代移动操作器兼容,包括单臂到双臂、关节到末端执行器、位置到速度,甚至包括轮式运动。该模型在6K+(最大的之一)自收集的双手情节上进行了微调,并部署在ALOHA双臂机器人上。它在灵巧性、零样本泛化能力和少样本学习方面达到了最先进的性能。
高效3D高斯重建模型,实现大场景快速重建
Long-LRM是一个用于3D高斯重建的模型,能够从一系列输入图像中重建出大场景。该模型能在1.3秒内处理32张960x540分辨率的源图像,并且仅在单个A100 80G GPU上运行。它结合了最新的Mamba2模块和传统的transformer模块,通过高效的token合并和高斯修剪步骤,在保证质量的同时提高了效率。与传统的前馈模型相比,Long-LRM能够一次性重建整个场景,而不是仅重建场景的一小部分。在大规模场景数据集上,如DL3DV-140和Tanks and Temples,Long-LRM的性能可与基于优化的方法相媲美,同时效率提高了两个数量级。
© 2024 AIbase 备案号:闽ICP备08105208号-14