提供AI边缘处理器,专为实现高性能深度学习应用而设计。
Hailo AI on the Edge Processors提供AI加速器和视觉处理器,支持边缘设备解决方案,旨在实现新时代的AI边缘处理和视频增强。产品定位于提供高性能深度学习应用,同时支持感知和视频增强。
一个虚拟计算机助手,可以执行,如搜索或创建图像。
Computer Agent 是一款能够帮助用户自动化各种计算机任务的工具。它能够处理从网络搜索到图像生成等多种功能,极大提高工作效率。此产品适合希望节省时间和精力的用户,尤其是在需要频繁执行重复性任务的场合。该应用是免费的,提供了简单直观的操作界面,适合各类用户使用。
用于理解任意视频中的相机运动的工具。
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。它的主要优点在于利用生成性视觉语言模型进行相机运动的原理分类和视频文本检索。通过与传统的结构从运动 (SfM) 和实时定位与*构建 (SLAM) 方法进行比较,该模型在捕捉场景语义方面显示出了显著的优势。该模型已开源,适合研究人员和开发者使用,且后续将推出更多改进版本。
一个基于深度学习的图像和视频描述模型。
Describe Anything 模型(DAM)能够处理图像或视频的特定区域,并生成详细描述。它的主要优点在于可以通过简单的标记(点、框、涂鸦或掩码)来生成高质量的本地化描述,极大地提升了计算机视觉领域的图像理解能力。该模型由 NVIDIA 和多所大学联合开发,适合用于研究、开发和实际应用中。
通过生成推理扩大过程奖励模型的测试时间计算。
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。这项技术能够在处理复杂任务时提供更准确的奖励评估,适用于多种机器学习和人工智能领域的应用。其主要优点是能够在资源有限的情况下优化模型性能,并在实际应用中降低计算成本。
全新多模态推理模型,支持图文输入、文字输出,具备高精度图像感知与复杂推理能力。
Step-R1-V-Mini是阶跃星辰推出的全新多模态推理模型,支持图文输入和文字输出,具备良好的指令遵循和通用能力。该模型在多模态协同场景下的推理表现上进行了技术优化,采用了多模态联合强化学习和充分利用多模态合成数据的训练方法,有效提升了模型在图像空间的复杂链路处理能力。Step-R1-V-Mini在多个公开榜单中表现亮眼,特别是在MathVision视觉推理榜单上位列国内第一,展现了其在视觉推理、数学逻辑和代码等方面的优异表现。该模型已正式上线阶跃AI网页端,并在阶跃星辰开放平台提供API接口,供开发者和研究人员体验和使用。
为 Diffusion Transformer 提供高效灵活的控制框架。
EasyControl 是一个为 Diffusion Transformer(扩散变换器)提供高效灵活控制的框架,旨在解决当前 DiT 生态系统中存在的效率瓶颈和模型适应性不足等问题。其主要优点包括:支持多种条件组合、提高生成灵活性和推理效率。该产品是基于最新研究成果开发的,适合在图像生成、风格转换等领域使用。
RF-DETR 是由 Roboflow 开发的实时目标检测模型。
RF-DETR 是一个基于变压器的实时目标检测模型,旨在为边缘设备提供高精度和实时性能。它在 Microsoft COCO 基准测试中超过了 60 AP,具有竞争力的性能和快速的推理速度,适合各种实际应用场景。RF-DETR 旨在解决现实世界中的物体检测问题,适用于需要高效且准确检测的行业,如安防、自动驾驶和智能监控等。
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
通过拍照轻松追踪卡路里。
Cal AI 是一款利用先进的人工智能技术,通过拍照快速计算食物的卡路里和营养成分的应用程序。它结合深度传感器和多模态 AI 模型,为用户提供准确的饮食跟踪。适合关注健康饮食和卡路里管理的用户,Cal AI 的使用非常简单,帮助用户轻松获取食物信息,并提高饮食意识。
WoolyAI 是一种通过解耦 CUDA 执行与 GPU 来实现无限制 AI 基础设施管理的技术。
WoolyAI 是一种创新的 AI 基础设施管理技术,通过其核心产品 WoolyStack,实现了将 CUDA 执行从 GPU 解耦,从而打破了传统 GPU 资源管理的限制。该技术允许用户在 CPU 基础设施上运行 Pytorch 应用,并通过 Wooly 运行时库将计算任务动态分配到远程 GPU 资源。这种架构不仅提高了资源利用率,还降低了成本,并增强了隐私和安全性。其主要面向需要高效 GPU 资源管理的企业和开发者,尤其是在云计算和 AI 开发场景中。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
Flux 是一个用于 GPU 上张量/专家并行的快速通信重叠库。
Flux 是由字节跳动开发的一个高性能通信重叠库,专为 GPU 上的张量和专家并行设计。它通过高效的内核和对 PyTorch 的兼容性,支持多种并行化策略,适用于大规模模型训练和推理。Flux 的主要优点包括高性能、易于集成和对多种 NVIDIA GPU 架构的支持。它在大规模分布式训练中表现出色,尤其是在 Mixture-of-Experts (MoE) 模型中,能够显著提高计算效率。
Aya Vision 是 Cohere 推出的多语言多模态视觉模型,旨在提升多语言场景下的视觉和文本理解能力。
Aya Vision 是 Cohere For AI 团队开发的先进视觉模型,专注于多语言多模态任务,支持 23 种语言。该模型通过创新的算法突破,如合成标注、多语言数据扩展和多模态模型融合,显著提升了视觉和文本任务的性能。其主要优点包括高效性(在计算资源有限的情况下仍能表现出色)和广泛的多语言支持。Aya Vision 的发布旨在推动多语言多模态研究的前沿发展,并为全球研究社区提供技术支持。
一种用于可变多层透明图像生成的匿名区域变换器技术。
ART 是一种基于深度学习的图像生成技术,专注于生成可变多层透明图像。它通过匿名区域布局和 Transformer 架构,实现了高效的多层图像生成。该技术的主要优点包括高效性、灵活性以及对多层图像生成的支持。它适用于需要精确控制图像层的场景,如图形设计、视觉特效等领域。目前未明确提及价格和具体定位,但其技术特性表明它可能面向专业用户和企业级应用。
一个高效的无边界3D城市生成框架,使用3D高斯绘制技术实现快速生成。
GaussianCity是一个专注于高效生成无边界3D城市的框架,基于3D高斯绘制技术。该技术通过紧凑的3D场景表示和空间感知的高斯属性解码器,解决了传统方法在生成大规模城市场景时面临的内存和计算瓶颈。其主要优点是能够在单次前向传递中快速生成大规模3D城市,显著优于现有技术。该产品由南洋理工大学S-Lab团队开发,相关论文发表于CVPR 2025,代码和模型已开源,适用于需要高效生成3D城市环境的研究人员和开发者。
© 2025 AIbase 备案号:闽ICP备08105208号-14