需求人群:
"目标受众为大学教育者和学生,特别是那些希望在加速计算、数据科学、深度学习、图形学和机器人学等领域提升技能的个人。这些教学套件适合他们,因为它们提供了与行业标准和实践紧密相连的教育资源,有助于学生掌握关键的计算技能,并为未来的职业生涯做好准备。"
使用场景示例:
教授Wen-Mei Hwu和UIUC团队共同开发的加速计算教学套件。
教授Polo Chau和佐治亚理工学院团队共同开发的加速数据科学教学套件。
教授Yann LeCun和纽约大学团队共同开发的深度学习教学套件。
产品特色:
提供可下载的教学材料和在线课程。
包括讲座幻灯片、视频、实践实验室/编码项目/解决方案。
提供免费的在线DLI课程和认证。
提供电子书、测验问题/答案。
教学套件成员可获得免费访问DLI在线课程的代码。
课程包括GPU加速的工作站和自我节奏的学习环境。
学生只需网络浏览器和互联网连接即可开始学习。
使用教程:
访问NVIDIA DLI Teaching Kits网站。
选择感兴趣的教学套件,如加速计算、数据科学或深度学习。
下载所需的教学材料,包括讲座幻灯片和视频。
注册并参加免费的在线DLI课程。
完成课程后,获取认证以证明你的技能。
利用提供的实践实验室和编码项目来加深理解。
参与社区论坛和支持,与其他教育者和学生交流经验。
浏览量:36
最新流量情况
月访问量
2821.34k
平均访问时长
00:03:22
每次访问页数
3.63
跳出率
47.93%
流量来源
直接访问
29.67%
自然搜索
50.90%
邮件
0.04%
外链引荐
17.93%
社交媒体
1.25%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
23.30%
印度
4.85%
日本
4.66%
美国
16.26%
NVIDIA深度学习教学套件,助力教育者融入GPU课程。
NVIDIA DLI Teaching Kits是由NVIDIA深度学习研究所(DLI)提供的一套教学资源,旨在帮助大学教育者将GPU技术融入到他们的课程中。这些教学套件与领先的大学教师共同开发,提供完整的课程设计和易于使用的资源,使教育者能够将学术理论与现实世界的应用相结合,培养下一代创新者的关键计算技能。大多数教学套件现在也作为现成的Canvas LMS课程提供。
帮助客户发现全球公有云厂商可用的GPU实例
GPU Finder是一个帮助客户发现全球公有云厂商可用的GPU实例的平台。通过GPU Finder,用户可以快速查找各大公有云厂商提供的GPU实例,并比较它们的价格、配置和性能等信息,从而选择最适合自己需求的GPU实例。无论是进行机器学习、深度学习、图像处理还是科学计算,GPU Finder都能帮助用户快速找到合适的GPU实例。平台上提供了丰富的过滤和排序功能,让用户可以根据自己的需求进行精准的筛选,从而节省时间和成本。无论是初学者还是有经验的开发者,都可以轻松使用GPU Finder来发现和租用合适的GPU实例。
TensorDock 提供高性能的云端 GPU 服务,专为深度学习、AI 和渲染工作负载设计。
TensorDock 是一个为需要无可妥协可靠性的工作负载而构建的专业云服务提供商。它提供多种 GPU 服务器选项,包括 NVIDIA H100 SXMs,以及针对深度学习、AI 和渲染的最具成本效益的虚拟机基础设施。TensorDock 还提供全托管容器托管服务,具备操作系统级监控、自动扩展和负载均衡功能。此外,TensorDock 提供世界级别的企业支持,由专业人员提供服务。
深入理解深度学习的原理与应用
《Understanding Deep Learning》是一本深入探讨深度学习原理和应用的书籍。它提供了丰富的数学背景知识、监督学习、神经网络的构建与训练等深度学习领域的全面内容。书中提供的Python笔记本练习帮助读者通过实践来加深理解。此外,还有为教师提供的资源,包括图像、幻灯片和教辅材料。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
从零开始学习深度学习,实现GPT模型
zero_to_gpt是一个旨在帮助用户从零基础学习深度学习,并最终实现训练自己的GPT模型的教程。随着人工智能技术走出实验室并广泛应用于各行各业,社会对于能够理解并应用AI技术的人才需求日益增长。本教程结合理论与实践,通过解决实际问题(如天气预测、语言翻译等)来深入讲解深度学习的理论基础,如梯度下降和反向传播。课程内容从基础的神经网络架构和训练方法开始,逐步深入到复杂主题,如变换器、GPU编程和分布式训练。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
高级API,简化TensorFlow深度学习
TFLearn是一个基于TensorFlow的深度学习库,提供了一个高级API,用于实现深度神经网络。它具有易于使用和理解的高级API,快速的原型设计功能,全面的TensorFlow透明性,并支持最新的深度学习技术。TFLearn支持卷积网络、LSTM、双向RNN、批量归一化、PReLU、残差网络、生成网络等模型。可以用于图像分类、序列生成等任务。
轻松在远程GPU上运行本地笔记本
Moonglow是一个允许用户在远程GPU上运行本地Jupyter笔记本的服务,无需管理SSH密钥、软件包安装等DevOps问题。该服务由Leila和Trevor创立,Leila曾在Jane Street构建高性能基础设施,而Trevor在斯坦福的Hazy Research Lab进行机器学习研究。
深度学习API,简单、灵活、强大
Keras是一个为人类设计的API,遵循最佳实践,简化认知负荷,提供一致而简单的API,最大限度地减少常见用例所需的用户操作次数,并提供清晰而可操作的错误信息。Keras旨在为任何希望推出基于机器学习的应用程序的开发人员提供不公平的优势。Keras专注于调试速度、代码优雅性和简洁性、可维护性和可部署性。使用Keras,您的代码库更小,更易读,更易于迭代。您的模型在XLA编译和Autograph优化的加持下运行更快,并且更容易在每个平台(服务器、移动设备、浏览器、嵌入式设备)上部署。
深度学习天气预测模型
GraphCast是由Google DeepMind开发的深度学习模型,专注于全球中期天气预报。该模型通过先进的机器学习技术,能够预测天气变化,提高预报的准确性和速度。GraphCast模型在科学研究中发挥重要作用,有助于更好地理解和预测天气模式,对气象学、农业、航空等多个领域具有重要价值。
低成本按需GPU,为机器学习和AI任务即时启动
GPUDeploy是一个提供低成本按需GPU资源的网站,专为机器学习和人工智能任务设计,用户可以立即启动预配置的GPU实例,以支持复杂的计算任务。该产品主要优点包括低成本、即时可用性以及预配置的便利性,适合需要快速部署机器学习模型和算法的企业和个人。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
统一的深度学习训练框架
AXLearn是Apple基于JAX和XLA构建的深度学习库,采用面向对象的方式解决软件工程在大规模深度学习模型开发中的挑战。它的配置系统允许用户从可重用的构建块中组合模型,并与其他库(如Flax和Hugging Face transformers)集成。AXLearn旨在扩展训练规模,支持数百亿参数的模型在数千个加速器上高效训练,适合在公有云上部署。它还采用全局计算范式,允许用户描述全局虚拟计算机上的计算,而不是单个加速器。AXLearn支持广泛的应用,包括自然语言处理、计算机视觉和语音识别,并包含用于训练最先进模型的基线配置。
Flux 是一个用于 GPU 上张量/专家并行的快速通信重叠库。
Flux 是由字节跳动开发的一个高性能通信重叠库,专为 GPU 上的张量和专家并行设计。它通过高效的内核和对 PyTorch 的兼容性,支持多种并行化策略,适用于大规模模型训练和推理。Flux 的主要优点包括高性能、易于集成和对多种 NVIDIA GPU 架构的支持。它在大规模分布式训练中表现出色,尤其是在 Mixture-of-Experts (MoE) 模型中,能够显著提高计算效率。
数学作为黑箱的深度学习模型
MathBlackBox是一个深度学习模型,旨在探索数学问题解决的黑箱方法。它使用VLLM或其他OpenAI兼容的方法,通过Huggingface工具包和OpenAI进行推理,支持在Slurm环境下运行,并能够处理多种数据集。该项目目前处于早期阶段,需要充分测试后才能部署到实际产品中。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
开源分布式深度学习工具
The Microsoft Cognitive Toolkit(CNTK)是一个开源的商业级分布式深度学习工具。它通过有向图描述神经网络的计算步骤,支持常见的模型类型,并实现了自动微分和并行计算。CNTK支持64位Linux和Windows操作系统,可以作为Python、C或C++程序的库使用,也可以通过其自身的模型描述语言BrainScript作为独立的机器学习工具使用。
深度学习文档解析API
Cradl AI是一个专为开发者和具有高级数据捕获需求的企业设计的文档解析API。利用深度学习的强大能力,快速构建、训练和部署先进的文档解析模型,无需具备机器学习经验。提供灵活的定价和部署选项,适用于各种场景。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
TensorPool 是一个简化机器学习模型训练的云 GPU 平台。
TensorPool 是一个专注于简化机器学习模型训练的云 GPU 平台。它通过提供一个直观的命令行界面(CLI),帮助用户轻松描述任务并自动处理 GPU 的编排和执行。TensorPool 的核心技术包括智能的 Spot 节点恢复技术,能够在抢占式实例被中断时立即恢复作业,从而结合了抢占式实例的成本优势和按需实例的可靠性。此外,TensorPool 还通过实时多云分析选择最便宜的 GPU 选项,用户只需为实际执行时间付费,无需担心闲置机器带来的额外成本。TensorPool 的目标是让开发者无需花费大量时间配置云提供商,从而提高机器学习工程的速度和效率。它提供个人计划和企业计划,个人计划每周提供 $5 的免费信用额度,而企业计划则提供更高级的支持和功能。
探索YouTube上最新的机器学习/人工智能课程
ML-YouTube-Courses是一个开源项目,致力于整理和索引YouTube上最新的、最好的机器学习课程。项目包含各种主题的课程,如机器学习、深度学习、自然语言处理、计算机视觉等,涵盖基础知识和前沿技术。该项目帮助开发者和学习者高效地发现优质的在线教程。
基于深度强化学习的模型微调框架
ReFT是一个开源的研究项目,旨在通过深度强化学习技术对大型语言模型进行微调,以提高其在特定任务上的表现。该项目提供了详细的代码和数据,以便研究人员和开发者能够复现论文中的结果。ReFT的主要优点包括能够利用强化学习自动调整模型参数,以及通过微调提高模型在特定任务上的性能。产品背景信息显示,ReFT基于Codellama和Galactica模型,遵循Apache2.0许可证。
个性化学习,AI辅助教育
Chat2Course是一款创新的AI聊天机器人,提供个性化学习体验。它根据用户的偏好、学习风格和目标,定制独特的学习课程。通过与我们的聊天机器人一起制定教育目标,您将获得一个真正适合您需求的课程。Chat2Course是为您量身打造的教育革命。
AI驱动的学习平台,提升教育和创造力。
Quillminds是一个AI驱动的学习平台,旨在通过人工智能工具革新学习、教学和成长的方式,提升学生和教育工作者的创造力、生产力和成就。平台提供个性化学习路径、AI辅助学习工具和互动测验,同时为教育工作者提供AI驱动的课程规划、动态教学资源和吸引学生的工具。Quillminds通过AI技术,帮助用户节省准备时间,获取新鲜创意,并根据具体需求定制内容,支持一键资源生成和易于编辑分享的功能。
© 2025 AIbase 备案号:闽ICP备08105208号-14