需求人群:
"Flux 主要面向需要在 GPU 上进行大规模模型训练和推理的深度学习研究人员和工程师,特别是那些使用 PyTorch 框架和 MoE 模型的用户。它能够帮助他们提高模型的训练效率和推理性能,同时降低硬件资源的使用成本。"
使用场景示例:
在大规模 MoE 模型中,Flux 能够显著减少通信开销,提高模型训练速度。
研究人员可以利用 Flux 的高效内核优化现有模型的推理性能。
开发者可以在 PyTorch 项目中集成 Flux,提升分布式训练的效率。
产品特色:
支持多种 GPU 架构,包括 Ampere、Ada Lovelace 和 Hopper
提供高性能的通信重叠内核,优化计算效率
与 PyTorch 深度集成,易于在现有框架中使用
支持多种数据类型,包括 float16 和 float32
提供详细的安装指南和使用示例,方便开发者快速上手
使用教程:
1. 从 GitHub 克隆 Flux 仓库并安装依赖。
2. 根据 GPU 架构选择合适的构建选项,运行 build.sh 脚本。
3. 安装完成后,使用 Flux 提供的示例代码测试功能。
4. 在 PyTorch 项目中集成 Flux,通过调用其 API 实现通信重叠。
5. 根据需要调整 Flux 的配置,优化模型的训练和推理性能。
浏览量:127
最新流量情况
月访问量
5.13m
平均访问时长
00:06:32
每次访问页数
6.11
跳出率
36.07%
流量来源
直接访问
54.23%
自然搜索
31.90%
邮件
0.04%
外链引荐
11.74%
社交媒体
1.91%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.57%
德国
3.83%
印度
10.07%
俄罗斯
4.92%
美国
18.64%
Flux 是一个用于 GPU 上张量/专家并行的快速通信重叠库。
Flux 是由字节跳动开发的一个高性能通信重叠库,专为 GPU 上的张量和专家并行设计。它通过高效的内核和对 PyTorch 的兼容性,支持多种并行化策略,适用于大规模模型训练和推理。Flux 的主要优点包括高性能、易于集成和对多种 NVIDIA GPU 架构的支持。它在大规模分布式训练中表现出色,尤其是在 Mixture-of-Experts (MoE) 模型中,能够显著提高计算效率。
帮助客户发现全球公有云厂商可用的GPU实例
GPU Finder是一个帮助客户发现全球公有云厂商可用的GPU实例的平台。通过GPU Finder,用户可以快速查找各大公有云厂商提供的GPU实例,并比较它们的价格、配置和性能等信息,从而选择最适合自己需求的GPU实例。无论是进行机器学习、深度学习、图像处理还是科学计算,GPU Finder都能帮助用户快速找到合适的GPU实例。平台上提供了丰富的过滤和排序功能,让用户可以根据自己的需求进行精准的筛选,从而节省时间和成本。无论是初学者还是有经验的开发者,都可以轻松使用GPU Finder来发现和租用合适的GPU实例。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
一种用于V3/R1训练中计算与通信重叠的双向流水线并行算法。
DualPipe是一种创新的双向流水线并行算法,由DeepSeek-AI团队开发。该算法通过优化计算与通信的重叠,显著减少了流水线气泡,提高了训练效率。它在大规模分布式训练中表现出色,尤其适用于需要高效并行化的深度学习任务。DualPipe基于PyTorch开发,易于集成和扩展,适合需要高性能计算的开发者和研究人员使用。
NVIDIA深度学习教学套件,助力教育者融入GPU课程。
NVIDIA DLI Teaching Kits是由NVIDIA深度学习研究所(DLI)提供的一套教学资源,旨在帮助大学教育者将GPU技术融入到他们的课程中。这些教学套件与领先的大学教师共同开发,提供完整的课程设计和易于使用的资源,使教育者能够将学术理论与现实世界的应用相结合,培养下一代创新者的关键计算技能。大多数教学套件现在也作为现成的Canvas LMS课程提供。
TensorDock 提供高性能的云端 GPU 服务,专为深度学习、AI 和渲染工作负载设计。
TensorDock 是一个为需要无可妥协可靠性的工作负载而构建的专业云服务提供商。它提供多种 GPU 服务器选项,包括 NVIDIA H100 SXMs,以及针对深度学习、AI 和渲染的最具成本效益的虚拟机基础设施。TensorDock 还提供全托管容器托管服务,具备操作系统级监控、自动扩展和负载均衡功能。此外,TensorDock 提供世界级别的企业支持,由专业人员提供服务。
高效的分布式数据并行框架,专为大型语言模型设计。
YaFSDP是一个分布式数据并行框架,专为与transformer类神经网络结构良好协作而设计。它在预训练大型语言模型(Large Language Models, LLMs)时比传统的FSDP快20%,并且在高内存压力条件下表现更佳。YaFSDP旨在减少通信和内存操作的开销。
开源机器人模拟平台,用于生成无限机器人数据和泛化AI。
ManiSkill是一个领先的开源平台,专注于机器人模拟、无限机器人数据生成和泛化机器人AI。由HillBot.ai领导,该平台支持通过状态和/或视觉输入快速训练机器人,与其它平台相比,ManiSkill/SAPIEN实现了10-100倍的视觉数据收集速度。它支持在GPU上并行模拟和渲染RGB-D,速度高达30,000+FPS。ManiSkill提供了40多种技能/任务和2000多个对象的预构建任务,拥有数百万帧的演示和密集的奖励函数,用户无需自己收集资产或设计任务,可以专注于算法开发。此外,它还支持在每个并行环境中同时模拟不同的对象和关节,训练泛化机器人策略/AI的时间从天缩短到分钟。ManiSkill易于使用,可以通过pip安装,并提供简单灵活的GUI以及所有功能的广泛文档。
低成本按需GPU,为机器学习和AI任务即时启动
GPUDeploy是一个提供低成本按需GPU资源的网站,专为机器学习和人工智能任务设计,用户可以立即启动预配置的GPU实例,以支持复杂的计算任务。该产品主要优点包括低成本、即时可用性以及预配置的便利性,适合需要快速部署机器学习模型和算法的企业和个人。
一个用于专家并行负载均衡的开源算法,旨在优化多GPU环境下的专家分配和负载平衡。
Expert Parallelism Load Balancer (EPLB)是一种用于深度学习中专家并行(EP)的负载均衡算法。它通过冗余专家策略和启发式打包算法,确保不同GPU之间的负载平衡,同时利用组限制专家路由减少节点间数据流量。该算法对于大规模分布式训练具有重要意义,能够提高资源利用率和训练效率。
AI创新的优化计算赋能者
LLM GPU Helper 是一个专注于人工智能领域的在线平台,提供GPU内存计算、模型推荐和大模型知识库访问等服务。它通过量身定制的建议和专家知识,帮助企业加速AI应用,深受超过3500名用户的信赖,并获得了5.0的高评分。平台的主要优点包括高准确度的GPU内存计算器、个性化的模型推荐、全面的知识库访问以及对小型企业和初创公司的特别支持。
为您的工作流程选择合适的云GPU供应商。
Cloud GPUs是一个网站,帮助您比较和选择适合您工作流程的云GPU供应商。该网站列出了多家云GPU提供商及其GPU型号和价格,方便您快速找到合适的GPU资源。无论您是进行机器学习训练、科学计算还是图形渲染,Cloud GPUs都能为您推荐高性能且经济实惠的云GPU解决方案。
DeepEP 是一个针对 Mixture-of-Experts 和专家并行通信的高效通信库。
DeepEP 是一个专为混合专家模型(MoE)和专家并行(EP)设计的通信库。它提供了高吞吐量和低延迟的全连接 GPU 内核,支持低精度操作(如 FP8)。该库针对非对称域带宽转发进行了优化,适合训练和推理预填充任务。此外,它还支持流处理器(SM)数量控制,并引入了一种基于钩子的通信-计算重叠方法,不占用任何 SM 资源。DeepEP 的实现虽然与 DeepSeek-V3 论文略有差异,但其优化的内核和低延迟设计使其在大规模分布式训练和推理任务中表现出色。
专注于 GPU 算力云服务,提供高效算力解决方案。
蓝耘元生代 AIDC OS 是一款专注于 GPU 算力云服务的产品,旨在为企业和开发者提供强大的计算能力和灵活的资源配置。该产品支持多种 GPU 型号,按需计费,适用于深度学习、图形渲染等领域。其主要优点在于高性能的计算资源、可扩展的存储解决方案以及合规的云服务环境,满足不同规模企业的需求。价格为每小时 1.50 元到 1.60 元不等,依据所选 GPU 型号而定。
FlashMLA 是一个针对 Hopper GPU 优化的高效 MLA 解码内核,适用于变长序列服务。
FlashMLA 是一个针对 Hopper GPU 优化的高效 MLA 解码内核,专为变长序列服务设计。它基于 CUDA 12.3 及以上版本开发,支持 PyTorch 2.0 及以上版本。FlashMLA 的主要优势在于其高效的内存访问和计算性能,能够在 H800 SXM5 上实现高达 3000 GB/s 的内存带宽和 580 TFLOPS 的计算性能。该技术对于需要大规模并行计算和高效内存管理的深度学习任务具有重要意义,尤其是在自然语言处理和计算机视觉领域。FlashMLA 的开发灵感来源于 FlashAttention 2&3 和 cutlass 项目,旨在为研究人员和开发者提供一个高效的计算工具。
分析 V3/R1 中的计算与通信重叠策略,提供深度学习框架的性能分析数据。
DeepSeek Profile Data 是一个专注于深度学习框架性能分析的项目。它通过 PyTorch Profiler 捕获训练和推理框架的性能数据,帮助研究人员和开发者更好地理解计算与通信重叠策略以及底层实现细节。这些数据对于优化大规模分布式训练和推理任务至关重要,能够显著提升系统的效率和性能。该项目是 DeepSeek 团队在深度学习基础设施领域的重要贡献,旨在推动社区对高效计算策略的探索。
深度学习驱动的三维重建技术
VGGSfM是一种基于深度学习的三维重建技术,旨在从一组不受限制的2D图像中重建场景的相机姿态和3D结构。该技术通过完全可微分的深度学习框架,实现端到端的训练。它利用深度2D点跟踪技术提取可靠的像素级轨迹,同时基于图像和轨迹特征恢复所有相机,并通过可微分的捆绑调整层优化相机和三角化3D点。VGGSfM在CO3D、IMC Phototourism和ETH3D三个流行数据集上取得了最先进的性能。
大规模深度循环语言模型的预训练代码,支持在4096个AMD GPU上运行。
该产品是一个用于大规模深度循环语言模型的预训练代码库,基于Python开发。它在AMD GPU架构上进行了优化,能够在4096个AMD GPU上高效运行。该技术的核心优势在于其深度循环架构,能够有效提升模型的推理能力和效率。它主要用于研究和开发高性能的自然语言处理模型,特别是在需要大规模计算资源的场景中。该代码库开源且基于Apache-2.0许可证,适合学术研究和工业应用。
高级API,简化TensorFlow深度学习
TFLearn是一个基于TensorFlow的深度学习库,提供了一个高级API,用于实现深度神经网络。它具有易于使用和理解的高级API,快速的原型设计功能,全面的TensorFlow透明性,并支持最新的深度学习技术。TFLearn支持卷积网络、LSTM、双向RNN、批量归一化、PReLU、残差网络、生成网络等模型。可以用于图像分类、序列生成等任务。
图形与计算力的电流,我们的软件让虚拟远程GPU成为负担得起且易于访问的实用工具。
Juice Labs是一款开启图形与计算力的电流的软件。它将虚拟远程GPU变成了一种负担得起且易于访问的实用工具。通过Juice Labs,用户可以轻松地利用虚拟GPU进行图形计算,无论是在设计、视频编辑还是其他需要强大计算力的场景下。Juice Labs的主要功能包括提供远程GPU服务、优化图形计算效率、降低成本、提高用户的工作效率等。该产品的定价信息可在官方网站上获取。Juice Labs定位于为用户提供高效、便捷的图形与计算力解决方案。
轻松在远程GPU上运行本地笔记本
Moonglow是一个允许用户在远程GPU上运行本地Jupyter笔记本的服务,无需管理SSH密钥、软件包安装等DevOps问题。该服务由Leila和Trevor创立,Leila曾在Jane Street构建高性能基础设施,而Trevor在斯坦福的Hazy Research Lab进行机器学习研究。
深度学习API,简单、灵活、强大
Keras是一个为人类设计的API,遵循最佳实践,简化认知负荷,提供一致而简单的API,最大限度地减少常见用例所需的用户操作次数,并提供清晰而可操作的错误信息。Keras旨在为任何希望推出基于机器学习的应用程序的开发人员提供不公平的优势。Keras专注于调试速度、代码优雅性和简洁性、可维护性和可部署性。使用Keras,您的代码库更小,更易读,更易于迭代。您的模型在XLA编译和Autograph优化的加持下运行更快,并且更容易在每个平台(服务器、移动设备、浏览器、嵌入式设备)上部署。
深度学习天气预测模型
GraphCast是由Google DeepMind开发的深度学习模型,专注于全球中期天气预报。该模型通过先进的机器学习技术,能够预测天气变化,提高预报的准确性和速度。GraphCast模型在科学研究中发挥重要作用,有助于更好地理解和预测天气模式,对气象学、农业、航空等多个领域具有重要价值。
提供AI边缘处理器,专为实现高性能深度学习应用而设计。
Hailo AI on the Edge Processors提供AI加速器和视觉处理器,支持边缘设备解决方案,旨在实现新时代的AI边缘处理和视频增强。产品定位于提供高性能深度学习应用,同时支持感知和视频增强。
为深度学习和人工智能构建的数据平台
VAST Data Platform 是世界上第一个为深度学习和人工智能构建的数据平台,采用突破性的数据密集计算方法,提供全面的软件基础设施,实时进行深度数据分析和深度学习,用于捕获、分类、细化、丰富和保护数据。它是 20 年来的第一个新的可扩展架构,专为未来 20 年的人工智能和大数据计算而设计。VAST Data Platform 允许将所有渲染资产放入一个无层级存储集群中,将这些 PB 级数据用作未来人工智能应用的训练数据。它还具有强大的 AI 能力,可支持对大规模视频、音频和文本数据集构建和训练 AI/ML 模型,从而实现全球无摩擦的通信体验。
深入理解深度学习的原理与应用
《Understanding Deep Learning》是一本深入探讨深度学习原理和应用的书籍。它提供了丰富的数学背景知识、监督学习、神经网络的构建与训练等深度学习领域的全面内容。书中提供的Python笔记本练习帮助读者通过实践来加深理解。此外,还有为教师提供的资源,包括图像、幻灯片和教辅材料。
© 2025 AIbase 备案号:闽ICP备08105208号-14