一个用于专家并行负载均衡的开源算法,旨在优化多GPU环境下的专家分配和负载平衡。
Expert Parallelism Load Balancer (EPLB)是一种用于深度学习中专家并行(EP)的负载均衡算法。它通过冗余专家策略和启发式打包算法,确保不同GPU之间的负载平衡,同时利用组限制专家路由减少节点间数据流量。该算法对于大规模分布式训练具有重要意义,能够提高资源利用率和训练效率。
一种用于V3/R1训练中计算与通信重叠的双向流水线并行算法。
DualPipe是一种创新的双向流水线并行算法,由DeepSeek-AI团队开发。该算法通过优化计算与通信的重叠,显著减少了流水线气泡,提高了训练效率。它在大规模分布式训练中表现出色,尤其适用于需要高效并行化的深度学习任务。DualPipe基于PyTorch开发,易于集成和扩展,适合需要高性能计算的开发者和研究人员使用。
LLaSA: 扩展基于 LLaMA 的语音合成的训练时间和测试时间计算量
LLaSA_training 是一个基于 LLaMA 的语音合成训练项目,旨在通过优化训练时间和推理时间的计算资源,提升语音合成模型的效率和性能。该项目利用开源数据集和内部数据集进行训练,支持多种配置和训练方式,具有较高的灵活性和可扩展性。其主要优点包括高效的数据处理能力、强大的语音合成效果以及对多种语言的支持。该项目适用于需要高性能语音合成解决方案的研究人员和开发者,可用于开发智能语音助手、语音播报系统等应用场景。
一种可扩展的内存层实现,用于在不增加计算量的情况下扩展模型参数.
Memory Layers at Scale 是一种创新的内存层实现方式,通过可训练的键值查找机制,在不增加浮点运算次数的情况下为模型增加额外的参数。这种方法在大规模语言模型中尤为重要,因为它能够在保持计算效率的同时,显著提升模型的存储和检索能力。该技术的主要优点包括高效扩展模型容量、降低计算资源消耗以及提高模型的灵活性和可扩展性。该项目由 Meta Lingua 团队开发,适用于需要处理大规模数据和复杂模型的场景。
高效全球分布式AI模型训练框架
PrimeIntellect-ai/prime是一个用于在互联网上高效、全球分布式训练AI模型的框架。它通过技术创新,实现了跨地域的AI模型训练,提高了计算资源的利用率,降低了训练成本,对于需要大规模计算资源的AI研究和应用开发具有重要意义。
10亿参数的英文文本和代码语言模型
INTELLECT-1-Instruct是一个由Prime Intellect训练的10亿参数语言模型,从零开始在1万亿个英文文本和代码token上进行训练。该模型支持文本生成,并且具有分布式训练的能力,能够在不可靠的、全球分布的工作者上进行高性能训练。它使用了DiLoCo算法进行训练,并利用自定义的int8 all-reduce内核来减少通信负载,显著降低了通信开销。这个模型的背景信息显示,它是由30个独立的社区贡献者提供计算支持,并在3个大洲的14个并发节点上进行训练。
高效的大型语言模型(LLM)研究代码库
Meta Lingua 是一个轻量级、高效的大型语言模型(LLM)训练和推理库,专为研究而设计。它使用了易于修改的PyTorch组件,使得研究人员可以尝试新的架构、损失函数和数据集。该库旨在实现端到端的训练、推理和评估,并提供工具以更好地理解模型的速度和稳定性。尽管Meta Lingua目前仍在开发中,但已经提供了多个示例应用来展示如何使用这个代码库。
AI开发规模化的民主化平台
Prime Intellect是一个致力于AI开发规模化民主化的平台,提供全球计算资源的发现、模型训练以及共同拥有智能创新的能力。它通过分布式训练跨集群,使得用户能够训练最前沿的模型,并且共同拥有由此产生的开放AI创新成果,包括语言模型和科学突破。
开源实现分布式低通信AI模型训练
OpenDiLoCo是一个开源框架,用于实现和扩展DeepMind的分布式低通信(DiLoCo)方法,支持全球分布式AI模型训练。它通过提供可扩展的、去中心化的框架,使得在资源分散的地区也能高效地进行AI模型的训练,这对于推动AI技术的普及和创新具有重要意义。
实现零泡泡管道并行的调度策略
Zero Bubble Pipeline Parallelism是大规模分布式训练的关键组成部分之一,其效率受到管道泡沫的影响。我们引入了一种调度策略,成功实现了在同步训练语义下零管道泡沫。这一改进的关键思想是将反向计算分为两部分,一部分计算输入的梯度,另一部分计算参数的梯度。基于这一思想,我们手工设计了新颖的管道调度,明显优于基准方法。我们进一步开发了一种算法,根据特定模型配置和内存限制自动找到最佳调度。此外,为了真正实现零泡泡,我们引入了一种新颖的技术,在优化器步骤期间绕过同步。实验评估表明,我们的方法在类似内存限制下的吞吐量比1F1B调度高出了最多23%。当内存约束放宽时,这一数字可以进一步提高至31%。我们相信我们的结果标志着在发挥管道并行潜力方面迈出了重要的一步。
© 2025 AIbase 备案号:闽ICP备08105208号-14