需求人群:
"GPUDeploy的目标受众是机器学习和人工智能领域的研究者、开发者以及企业用户。他们需要快速访问GPU资源来训练模型、进行数据分析和执行其他计算密集型任务。GPUDeploy提供的即时启动和低成本特性,使得这些用户可以更加灵活和经济地进行他们的工作。"
使用场景示例:
数据科学家使用GPUDeploy进行大规模数据集的深度学习训练。
AI初创公司利用GPUDeploy进行算法开发和测试。
研究机构通过GPUDeploy进行科学计算和模拟实验。
产品特色:
即时启动预配置的GPU实例
支持机器学习和AI任务
低成本的GPU资源
适用于复杂的计算任务
用户友好的界面设计
灵活的资源配置选项
高可用性和稳定性
使用教程:
1. 访问GPUDeploy网站并注册账户。
2. 选择适合自己需求的GPU实例配置。
3. 配置所需的机器学习或AI任务环境。
4. 启动GPU实例并开始任务。
5. 监控任务进度和GPU资源使用情况。
6. 任务完成后,根据需要调整或关闭GPU实例。
浏览量:58
帮助客户发现全球公有云厂商可用的GPU实例
GPU Finder是一个帮助客户发现全球公有云厂商可用的GPU实例的平台。通过GPU Finder,用户可以快速查找各大公有云厂商提供的GPU实例,并比较它们的价格、配置和性能等信息,从而选择最适合自己需求的GPU实例。无论是进行机器学习、深度学习、图像处理还是科学计算,GPU Finder都能帮助用户快速找到合适的GPU实例。平台上提供了丰富的过滤和排序功能,让用户可以根据自己的需求进行精准的筛选,从而节省时间和成本。无论是初学者还是有经验的开发者,都可以轻松使用GPU Finder来发现和租用合适的GPU实例。
低成本按需GPU,为机器学习和AI任务即时启动
GPUDeploy是一个提供低成本按需GPU资源的网站,专为机器学习和人工智能任务设计,用户可以立即启动预配置的GPU实例,以支持复杂的计算任务。该产品主要优点包括低成本、即时可用性以及预配置的便利性,适合需要快速部署机器学习模型和算法的企业和个人。
TensorPool 是一个简化机器学习模型训练的云 GPU 平台。
TensorPool 是一个专注于简化机器学习模型训练的云 GPU 平台。它通过提供一个直观的命令行界面(CLI),帮助用户轻松描述任务并自动处理 GPU 的编排和执行。TensorPool 的核心技术包括智能的 Spot 节点恢复技术,能够在抢占式实例被中断时立即恢复作业,从而结合了抢占式实例的成本优势和按需实例的可靠性。此外,TensorPool 还通过实时多云分析选择最便宜的 GPU 选项,用户只需为实际执行时间付费,无需担心闲置机器带来的额外成本。TensorPool 的目标是让开发者无需花费大量时间配置云提供商,从而提高机器学习工程的速度和效率。它提供个人计划和企业计划,个人计划每周提供 $5 的免费信用额度,而企业计划则提供更高级的支持和功能。
在Cloudflare全球网络运行机器学习模型
Workers AI是Cloudflare推出的一款在边缘计算环境中运行机器学习模型的产品。它允许用户在全球范围内的Cloudflare网络节点上部署和运行AI应用,这些应用可以是图像分类、文本生成、目标检测等多种类型。Workers AI的推出标志着Cloudflare在全球网络中部署了GPU资源,使得开发者能够构建和部署接近用户的雄心勃勃的AI应用。该产品的主要优点包括全球分布式部署、低延迟、高性能和可靠性,同时支持免费和付费计划。
在自己的GPU上免费生成AI图像
NMKD稳定扩散GUI是一个方便的界面工具,可以在自己的硬件上本地运行稳定扩散,这是一个用于从文本生成图像的机器学习工具包。它完全没有审查和过滤,生成的内容我不负责。不会共享/收集任何数据。该工具正在积极开发中,可能会出现一些小问题。 主要功能: - 包含依赖项,无需复杂安装 - 支持文本到图像和图像到图像(图像+文本提示) - 支持基于指令的图像编辑(InstructPix2Pix) - 提示功能:关注/强调,负面提示 - 支持自定义稳定扩散模型和自定义VAE模型 - 同时运行多个提示 - 内置图像查看器,显示生成图像的信息 - 内置超分辨率(RealESRGAN)和人脸修复(CodeFormer或GFPGAN) - 提示队列和提示历史 - 创建无缝(平铺)图像的选项,例如用于游戏纹理 - 支持加载自定义概念(文本反转) - 支持加载LoRA概念/角色/风格 - 各种用户体验功能 - 速度快,取决于您的GPU(RTX 4090每张图像<1秒,RTX 3090每张图像<2秒) - 内置安全措施,扫描下载的模型是否包含恶意软件 - 内置更新工具 系统要求:请参阅GitHub指南 如果您想支持开发,请查看我的Patreon,您还可以获得我最新的视频插帧工具Flowframes。 https://www.patreon.com/platform/iframe?widget=become-patron-button&redirectURI=https%3A%2F%2Fitch.io%2Fgame%2Fedit%2F755540%23published&creatorID=19695417 如果需要帮助或有问题,请加入Discord: https://discord.com/widget?id=777892450232434688&theme=dark 请不要直接私信或@我,如果需要帮助,请使用stable-diffusion-gui频道。
GPUX - 快速运行云GPU
GPUX是一个快速运行云GPU的平台。它提供了高性能的GPU实例,用于运行机器学习工作负载。GPUX支持各种常见的机器学习任务,包括稳定扩散、Blender、Jupyter Notebook等。它还提供了稳定扩散SDXL0.9、Alpaca、LLM和Whisper等功能。GPUX还具有1秒冷启动时间、Shared Instance Storage和ReBar+P2P支持等优势。定价合理,定位于提供高性能GPU实例的云平台。
数据科学与机器学习云平台
Saturn Cloud是一个解决数据科学和机器学习所需复杂基础设施管理和扩展的云平台。它提供了使用R和Python进行数据科学的环境,支持GPU、Dask集群等功能。Saturn Cloud可以帮助数据科学家、数据科学领导者和软件工程师简化开发、部署和数据处理的流程。该产品提供不同的功能和定价计划以满足各种需求。
专为 AI 设计的 GPU 云平台,提供高性能基础设施和全天候支持。
CoreWeave GPU 云计算是一个专为人工智能工作负载打造的云平台,提供灵活且高效的 GPU 集群,能够满足企业在大规模计算和存储方面的需求。它的主要优势包括极高的性能、可靠性和可扩展性,适合各种 AI 应用场景。通过 CoreWeave,用户能够显著降低云成本,同时提升服务响应速度,是 AI 创新的理想选择。
NVIDIA深度学习教学套件,助力教育者融入GPU课程。
NVIDIA DLI Teaching Kits是由NVIDIA深度学习研究所(DLI)提供的一套教学资源,旨在帮助大学教育者将GPU技术融入到他们的课程中。这些教学套件与领先的大学教师共同开发,提供完整的课程设计和易于使用的资源,使教育者能够将学术理论与现实世界的应用相结合,培养下一代创新者的关键计算技能。大多数教学套件现在也作为现成的Canvas LMS课程提供。
提供全球最便宜的GPU云服务,助力自托管AI/ML开发。
Thunder Compute是一个专注于AI/ML开发的GPU云服务平台,通过虚拟化技术,帮助用户以极低的成本使用高性能GPU资源。其主要优点是价格低廉,相比传统云服务提供商可节省高达80%的成本。该平台支持多种主流GPU型号,如NVIDIA Tesla T4、A100等,并提供7+ Gbps的网络连接,确保数据传输的高效性。Thunder Compute的目标是为AI开发者和企业降低硬件成本,加速模型训练和部署,推动AI技术的普及和应用。
AI创新的优化计算赋能者
LLM GPU Helper 是一个专注于人工智能领域的在线平台,提供GPU内存计算、模型推荐和大模型知识库访问等服务。它通过量身定制的建议和专家知识,帮助企业加速AI应用,深受超过3500名用户的信赖,并获得了5.0的高评分。平台的主要优点包括高准确度的GPU内存计算器、个性化的模型推荐、全面的知识库访问以及对小型企业和初创公司的特别支持。
无代码机器学习平台
NextBrain AI是一款无代码机器学习平台,让任何人都能轻松训练机器学习模型并将数据转化为有价值的见解,指导决策。它提供简单有效的分析和宝贵的洞察力,无需编程知识。同时支持Google Sheets插件和Web应用,选择适合您的方式开始训练机器学习模型吧!
轻松在远程GPU上运行本地笔记本
Moonglow是一个允许用户在远程GPU上运行本地Jupyter笔记本的服务,无需管理SSH密钥、软件包安装等DevOps问题。该服务由Leila和Trevor创立,Leila曾在Jane Street构建高性能基础设施,而Trevor在斯坦福的Hazy Research Lab进行机器学习研究。
机器学习加速 API
DirectML 是Windows上的机器学习平台API,为硬件供应商提供了一个通用的抽象层来暴露他们的机器学习加速器。它可以与任何兼容DirectX 12的设备一起使用,包括GPU和NPU。通过减少编写机器学习代码的成本,DirectML使得AI功能集成更加容易。
AI可观测性和机器学习监控平台
Evidently AI是一个开源的Python库,用于监控机器学习模型,支持从RAGs到AI助手的LLM驱动产品的评估。它提供了数据漂移、数据质量和生产ML模型性能的监控,拥有超过2000万的下载量和5000+的GitHub星标,是机器学习领域中一个值得信赖的监控工具。
开源跨平台的机器学习框架,能够轻松地在不同设备上构建机器学习应用
MediaPipe是一个由Google开发的开源跨平台机器学习框架,它能够帮助开发者通过简单的API轻松地在不同设备(手机、平板、浏览器、IoT设备等)上构建复杂的机器学习模型和应用。MediaPipe支持多种编程语言,内置了人脸识别、手势识别、目标追踪等多种预训练模型,开发者可以快速集成这些模型来开发智能应用。MediaPipe还支持模型压缩和量化技术,可以将模型大小缩小10倍以上,这对于在移动端部署机器学习模型非常有利。总体来说,MediaPipe是一个非常易用和高效的机器学习开发框架。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
TensorDock 提供高性能的云端 GPU 服务,专为深度学习、AI 和渲染工作负载设计。
TensorDock 是一个为需要无可妥协可靠性的工作负载而构建的专业云服务提供商。它提供多种 GPU 服务器选项,包括 NVIDIA H100 SXMs,以及针对深度学习、AI 和渲染的最具成本效益的虚拟机基础设施。TensorDock 还提供全托管容器托管服务,具备操作系统级监控、自动扩展和负载均衡功能。此外,TensorDock 提供世界级别的企业支持,由专业人员提供服务。
H2O Driverless AI是一个人工智能平台,使用自动化机器学习来减少数据科学工作量。
H2O Driverless AI通过自动化特征工程、模型开发、调参、解释等关键机器学习任务,能显著提高数据科学团队的工作效率。它为各行各业的企业提供了一个可扩展、可定制的数据科学平台,能够应对各种不同的业务需求。
端到端开源机器学习平台
TensorFlow是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展。在TensorFlow机器学习框架下,开发者能够轻松地构建和部署由机器学习提供支持的应用。
Python机器学习库
scikit-learn是一个简单高效的机器学习库,提供了丰富的机器学习算法和工具,可用于分类、回归、聚类、降维等任务。它基于NumPy、SciPy和matplotlib构建,具有易用性、性能优越以及可重复使用的特点。scikit-learn开源可商用,采用BSD许可证。
AI、机器学习和数据科学工作的最佳选择
Best AI Jobs是#1人工智能工作板,拥有2000多个工作职位,包括人工智能软件工程师、AI开发人员、机器学习工程师等。在AI领域找到一份工作,加入未来!
玩乐机器学习,成为钢琴大师!
Piano Genie是一个基于机器学习的钢琴模拟器。使用键盘上的数字键或触摸屏上的彩色块来演奏钢琴。按下空格键控制延音踏板。你越像真正的钢琴家一样弹奏,旋律(和你自己)就会越好听。Piano Genie使用magenta.js构建。
为您的工作流程选择合适的云GPU供应商。
Cloud GPUs是一个网站,帮助您比较和选择适合您工作流程的云GPU供应商。该网站列出了多家云GPU提供商及其GPU型号和价格,方便您快速找到合适的GPU资源。无论您是进行机器学习训练、科学计算还是图形渲染,Cloud GPUs都能为您推荐高性能且经济实惠的云GPU解决方案。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
AI 驱动的 CUDA 代码优化平台,快速提升 GPU 性能,无需手动优化复杂代码。
RightNow AI 是一个创新的 AI 驱动的 CUDA 代码优化平台,旨在帮助开发者快速提升 GPU 性能。它通过强大的 AI 技术,自动分析 CUDA 内核,识别性能瓶颈,并生成优化后的代码,相比手动优化,大大节省了时间和精力。该平台支持多种优化策略,如共享内存利用、线程协作、循环展开等,可实现高达 4 倍的性能提升。其主要面向需要高性能 GPU 计算的开发者和企业,尤其是那些缺乏专业 GPU 优化知识的团队。RightNow AI 提供多种付费计划,包括按需付费、开发者、专业和企业套餐,满足不同规模用户的需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14