需求人群:
"Memary的目标受众主要是人工智能和机器学习领域的开发者和研究人员,特别是那些致力于创建具有高级推理能力的自主智能体的专业人士。它适合需要模拟人类记忆过程以提升智能体性能的高级应用场景。"
使用场景示例:
用于开发具有长期记忆能力的聊天机器人。
集成到现有的智能系统中,以提供更加个性化的服务。
作为研究项目的一部分,探索人工智能的记忆和学习机制。
产品特色:
自动生成记忆:智能体交互时自动更新记忆。
记忆模块:跟踪用户偏好并展示在仪表盘中进行分析。
系统改进:模拟人类记忆随时间学习和进化的方式。
回溯记忆:保留所有聊天记录,以便回溯智能体执行过程。
知识图谱:使用Neo4j图数据库存储和管理知识。
记忆仪表板:提供记忆访问、分析和回溯的可视化界面。
自定义工具:允许开发者添加或移除智能体使用的工具。
使用教程:
1. 安装Memary:使用pip命令安装,确保Python版本符合要求。
2. 创建虚拟环境:按照指定的Python版本创建并激活虚拟环境。
3. 安装Python依赖:根据项目要求安装必要的Python库。
4. 配置环境变量:在.env文件中设置必要的API密钥和数据库连接信息。
5. 初始化Memary:使用提供的代码示例创建智能体并初始化Memary。
6. 添加自定义工具:根据需要向智能体添加或移除工具。
7. 使用Memary功能:通过智能体与Memary交互,利用其记忆和查询功能。
浏览量:8
最新流量情况
月访问量
5.00m
平均访问时长
00:06:52
每次访问页数
5.82
跳出率
37.31%
流量来源
直接访问
52.65%
自然搜索
32.08%
邮件
0.05%
外链引荐
12.79%
社交媒体
2.25%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.49%
德国
3.62%
印度
9.70%
俄罗斯
3.96%
美国
18.50%
开源记忆层,为自主智能体提供人类式记忆功能
Memary是一个开源的记忆层,专为自主智能体设计,通过模仿人类记忆的方式,提升智能体的推理和学习能力。它使用Neo4j图数据库存储知识,并结合了Llama Index和Perplexity模型来增强知识图谱的查询能力。Memary的主要优点包括自动生成记忆、记忆模块、系统改进和回溯记忆等功能,旨在以最小的开发者实现与现有智能体集成,并通过仪表盘提供记忆分析和系统改进的可视化数据。
由知识图谱引擎驱动的创新Agent框架
muAgent是一个创新的Agent框架,由知识图谱引擎驱动,支持多Agent编排和协同技术。它利用LLM+EKG(Eventic Knowledge Graph 行业知识承载)技术,结合FunctionCall、CodeInterpreter等,通过画布式拖拽和轻文字编写,实现复杂SOP流程的自动化。muAgent兼容市面上各类Agent框架,具备复杂推理、在线协同、人工交互、知识即用等核心功能。该框架已在蚂蚁集团多个复杂DevOps场景中得到验证。
利用多智能体系统自动化复杂研究流程的AI研究助理。
AI-Driven Research Assistant是一个高级的AI驱动研究助理系统,它利用多个专门化的智能体来协助进行数据分析、可视化和报告生成等任务。该系统采用LangChain、OpenAI的GPT模型和LangGraph来处理复杂的研究流程,整合不同的AI架构以实现最佳性能。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
AI工具目录,提升你的生产力
AI Scout是一个全面的AI工具目录,提供超过1800种AI工具,涵盖生产力、写作、设计、编程等多个领域。用户可以根据分类、平台和价格快速找到所需的AI工具,以提高工作效率和生活质量。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
精选全球AI前沿科技和开源产品
漫话开发者 - UWL.ME 是一个专注于人工智能前沿科技和开源产品的平台,提供最新的AI技术动态、开源产品介绍、以及相关领域的深度分析。它不仅为开发者和科技爱好者提供了一个获取信息的渠道,也为行业内部人员提供了交流和学习的平台。
Java编程爱好者的免费问答平台
Java Q&A Hub是一个专门为Java编程爱好者设计的在线问答平台,它提供了一系列与Java编程相关的问题和解答。该平台专注于Java语言的各个方面,包括基础知识、后端开发、Spring框架、Android开发、网络编程和Java虚拟机等。利用GPT-40-mini模型,Java Q&A Hub能够为用户提供准确、详实的回答,帮助用户解决Java编程中遇到的问题。
CodeGuide是您的算法助手,提供直观和可操作的学习反馈。
CodeGuide是一个专注于算法学习的网站,它通过与用户的交互,提供优化建议和正确的学习方向。它基于会话学习,实时工作,通过用户输入提出有益的想法,评估用户的技能水平,并推荐资源帮助用户提高。
高效能混合专家语言模型
Yuan2.0-M32-hf-int8是一个具有32个专家的混合专家(MoE)语言模型,其中2个是活跃的。该模型通过采用新的路由网络——注意力路由器,提高了专家选择的效率,使得准确率比使用传统路由网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模的密集模型所需计算量的9.25%。该模型在编程、数学和各种专业领域展现出竞争力,并且只使用37亿个活跃参数,占总参数40亿的一小部分,每个token的前向计算仅为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,分别达到了55.9%和95.8%的准确率。
高效能的混合专家语言模型
Yuan2.0-M32是一个具有32个专家的混合专家(MoE)语言模型,其中2个处于活跃状态。引入了新的路由网络——注意力路由器,以提高专家选择的效率,使模型在准确性上比使用传统路由器网络的模型提高了3.8%。Yuan2.0-M32从头开始训练,使用了2000亿个token,其训练计算量仅为同等参数规模密集型模型所需计算量的9.25%。在编码、数学和各种专业领域表现出竞争力,Yuan2.0-M32在总参数40亿中只有3.7亿活跃参数,每个token的前向计算量为7.4 GFLOPS,仅为Llama3-70B需求的1/19。Yuan2.0-M32在MATH和ARC-Challenge基准测试中超越了Llama3-70B,准确率分别达到了55.9%和95.8%。
基于知识图谱的智能问答系统。
Fact Finder 是一个开源的智能问答系统,它使用语言模型和知识图谱来生成自然语言回答和提供证据。该系统通过调用语言模型生成Cypher查询,查询知识图谱以获取答案,并使用另一个语言模型调用生成最终的自然语言回答。Fact Finder 的主要优点包括能够提供透明性,允许用户查看查询和证据,以及通过可视化子图提供直观的证据。
为Cursor.sh IDE提供AI辅助编码的开源仪表板。
CursorLens是一个开源的仪表板,专为Cursor.sh IDE设计,用于记录AI代码生成、跟踪使用情况并控制AI模型(包括本地模型)。它允许用户在本地运行或使用即将推出的托管版本。该产品代表了编程领域中AI技术的应用,提供了代码生成、使用跟踪和模型控制等功能,极大地提高了开发效率和代码质量。
一个适合学习、使用、自主扩展的RAG系统。
Easy-RAG是一个检索增强生成(RAG)系统,它不仅适合学习者了解和掌握RAG技术,同时也便于开发者使用和进行自主扩展。该系统通过集成知识图谱提取解析工具、rerank重新排序机制以及faiss向量数据库等技术,提高了检索效率和生成质量。
多代理礼宾系统,提升客户服务效率
multi-agent-concierge是一个多代理礼宾系统,它通过多个专门的代理来完成复杂的任务,并通过一个“礼宾”代理来引导用户到正确的代理。这种系统设计用于处理具有相互依赖关系的多个任务,使用数百种工具。该系统展示了如何通过自然语言指令创建代理之间的隐式“链”,并通过“延续”代理来管理这些链,同时使用全局状态来跟踪用户及其当前状态。
前沿语言模型,具有先进的推理能力。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
开源知识图谱构建模型,成本低廉
Triplex是一个创新的开源模型,能够将大量非结构化数据转换为结构化数据,其在知识图谱构建方面的表现超越了gpt-4o,且成本仅为其十分之一。它通过高效的将非结构化文本转换为知识图谱的构建基础——语义三元组,大幅降低了知识图谱的生成成本。
开源AI搜索引擎框架,性能媲美Perplexity.ai Pro。
MindSearch是一个基于大型语言模型(LLM)的多智能体网络搜索引擎框架,具有与Perplexity.ai Pro相似的性能。用户可以轻松部署自己的搜索引擎,支持闭源大型语言模型(如GPT、Claude)或开源大型语言模型(如InternLM2.5-7b-chat)。它具备以下特点:能够解决生活中的任何问题,利用网络知识提供深入和广泛的知识库答案;展示详细的解决方案路径,提高最终响应的可信度和可用性;提供优化的UI体验,包括React、Gradio、Streamlit和Terminal等多种接口;动态构建图谱,将用户查询分解为图谱中的原子子问题,并根据WebSearcher的搜索结果逐步扩展图谱。
一个动态、自成长的个人AI助手框架
Agent Zero是一个高度透明、可读、可理解、可定制和交互式的个人AI框架。它不是为特定任务预编程的,而是设计为通用的个人助手,能够执行命令和代码,与其他代理实例合作,并尽其所能完成任务。它具备持久记忆,能够记住以前的解决方案、代码、事实、指令等,以便在未来更快、更可靠地解决任务。Agent Zero使用操作系统作为工具来完成任务,没有预编程的单一用途工具。相反,它可以编写自己的代码,并使用终端根据需要创建和使用自己的工具。
将文本转换为知识图谱的Python工具。
knowledge_graph_maker是一个Python库,能够根据给定的本体论将任意文本转换为知识图谱。知识图谱是一种语义网络,代表现实世界实体之间的网络和它们之间的关系。该库通过图算法和中心性计算,帮助用户深入分析文本内容,实现概念之间的连接性分析,以及通过图检索增强生成(GRAG)技术,提升与文本的交流深度。
获取顶级 Hacker News 的解答
Ask Hackers 是一个专注于编程领域的问答平台,用户可以通过这个平台获取来自世界顶级黑客的解答和建议。它利用人工智能技术从Hacker News的评论中搜索信息,为用户提供高质量的编程问题解答。
先进的大型语言模型,具备推理和编程能力。
Mistral-Large-Instruct-2407是一个拥有123B参数的先进大型语言模型(LLM),具备最新的推理、知识和编程能力。它支持多语言,包括中文、英语、法语等十种语言,并且在80多种编程语言上受过训练,如Python、Java等。此外,它还具备代理中心能力和先进的数学及推理能力。
命令行工具与AI的结合
CommandAI 是一款结合了命令行工具和人工智能的桌面客户端软件。它通过提供强大的命令行接口,使得用户能够更高效地执行各种任务。该产品的主要优点包括:1. 高效性:通过命令行快速执行任务,提升工作效率。2. 智能化:集成AI技术,能够智能识别用户需求并提供相应解决方案。3. 灵活性:支持多种编程语言和脚本,满足不同用户的需求。4. 易用性:安装简单,用户界面友好,易于上手。5. 扩展性: 支持插件扩展,用户可以根据需要添加更多功能。
高性能知识图谱数据库与推理引擎
RDFox 是由牛津大学计算机科学系的三位教授基于数十年知识表示与推理(KRR)研究开发的规则驱动人工智能技术。其独特之处在于:1. 强大的AI推理能力:RDFox 能够像人类一样从数据中创建知识,基于事实进行推理,确保结果的准确性和可解释性。2. 高性能:作为唯一在内存中运行的知识图谱,RDFox 在基准测试中的表现远超其他图技术,能够处理数十亿三元组的复杂数据存储。3. 可扩展部署:RDFox 具有极高的效率和优化的占用空间,可以嵌入边缘和移动设备,作为 AI 应用的大脑独立运行。4. 企业级特性:包括高性能、高可用性、访问控制、可解释性、人类般的推理能力、数据导入和 API 支持等。5. 增量推理:RDFox 的推理功能在数据添加或删除时即时更新,不影响性能,无需重新加载。
使用Ollama和Gradio UI的GraphRAG本地模型
GraphRAG-Ollama-UI是一个基于微软GraphRAG的本地模型适配版本,支持使用Ollama进行本地模型支持。它通过Gradio UI提供了一个交互式用户界面,使得用户可以更方便地管理数据、运行查询和可视化结果。该模型的主要优点包括本地模型支持、成本效益高、交互式用户界面、实时图可视化、文件管理、设置管理、输出探索和日志记录。
创建和运行智能代理的工具
AutoGPT是一个强大的工具,它允许用户创建和运行智能代理,这些代理可以自动执行各种任务,使生活更轻松。AutoGPT的目标是提供工具,让用户专注于重要的事情。它通过构建和使用AI代理,推动了AI创新的前沿。
构建知识图谱的Neo4j应用
llm-graph-builder是一个利用大型语言模型(如OpenAI、Gemini等)从非结构化数据(PDF、DOCS、TXT、YouTube视频、网页等)中提取节点、关系及其属性,并使用Langchain框架创建结构化知识图谱的应用程序。它支持从本地机器、GCS或S3存储桶或网络资源上传文件,选择LLM模型并生成知识图谱。
开源自托管AI编程助手
Tabby是一个开源的、自托管的AI编程助手,它利用Rust语言的优势,为开发者提供快速且安全的编程体验。Tabby允许用户通过简单的TOML配置文件来控制部署,确保代码的安全性和合规性。
© 2024 AIbase 备案号:闽ICP备08105208号-14