需求人群:
["适用于需要处理大量文本和复杂对话的商业智能助手。","适合研究人员在自然语言处理领域的实验和模型训练。","对于开发者来说,可以用于创建定制的AI模型或代理,以支持关键业务操作。"]
使用场景示例:
作为聊天机器人,提供客户服务支持。
在内容创作中,生成创意文案和故事。
在教育领域,辅助语言学习和文本分析。
产品特色:
支持长文本生成,上下文长度扩展至1048K。
基于Meta Llama 3家族的大型语言模型,优化了对话使用案例。
使用NTK-aware插值和RingAttention技术进行训练。
在Crusoe Energy的高性能L40S集群上进行训练,以支持长文本处理。
生成的长文本通过数据增强和聊天数据集进行微调。
模型在安全性和性能上进行了细致的调整,以减少误拒绝并提高用户体验。
使用教程:
步骤1:访问Hugging Face模型库中的Llama-3 70B Instruct Gradient 1048k页面。
步骤2:根据需求选择使用transformers库或原始llama3代码库进行模型加载。
步骤3:通过提供的代码片段,配置模型参数并加载模型。
步骤4:准备输入文本或对话消息,并使用模型的tokenizer进行处理。
步骤5:设置生成文本的参数,如最大新令牌数、温度等。
步骤6:调用模型生成文本或执行特定任务。
步骤7:根据输出结果进行后续处理或展示。
浏览量:58
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
一款由Gradient AI团队开发的高性能语言模型,支持长文本生成和对话。
Llama-3 70B Instruct Gradient 1048k是一款由Gradient AI团队开发的先进语言模型,它通过扩展上下文长度至超过1048K,展示了SOTA(State of the Art)语言模型在经过适当调整后能够学习处理长文本的能力。该模型使用了NTK-aware插值和RingAttention技术,以及EasyContext Blockwise RingAttention库,以高效地在高性能计算集群上进行训练。它在商业和研究用途中具有广泛的应用潜力,尤其是在需要长文本处理和生成的场景中。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
AI21推出的Jamba 1.6模型,专为企业私有部署设计,具备卓越的长文本处理能力。
Jamba 1.6 是 AI21 推出的最新语言模型,专为企业私有部署而设计。它在长文本处理方面表现出色,能够处理长达 256K 的上下文窗口,采用混合 SSM-Transformer 架构,可高效准确地处理长文本问答任务。该模型在质量上超越了 Mistral、Meta 和 Cohere 等同类模型,同时支持灵活的部署方式,包括在本地或 VPC 中私有部署,确保数据安全。它为企业提供了一种无需在数据安全和模型质量之间妥协的解决方案,适用于需要处理大量数据和长文本的场景,如研发、法律和金融分析等。目前,Jamba 1.6 已在多个企业中得到应用,如 Fnac 使用其进行数据分类,Educa Edtech 利用其构建个性化聊天机器人等。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
256M参数的医学领域语言模型,用于医学文本处理等任务
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。其重要性在于为医学文本处理、医学知识提取等任务提供了有效的工具。在医学研究和临床实践中,大量的文本数据需要进行分析和处理,该模型能够理解和处理医学专业语言。主要优点包括在医学领域有较好的性能表现,能够处理多种医学相关的文本任务,如疾病诊断辅助、医学文献摘要等。该模型的背景是随着医学数据的增长,对处理医学文本的技术需求日益增加。其定位是为医学领域的研究人员、医生、开发者等提供语言处理能力支持,目前未提及价格相关信息。
国际领先的语言理解与长文本处理大模型。
GLM-4-Plus是智谱推出的一款基座大模型,它在语言理解、指令遵循和长文本处理等方面性能得到全面提升,保持了国际领先水平。该模型的推出,不仅代表了中国在大模型领域的创新和突破,还为开发者和企业提供了强大的语言处理能力,进一步推动了人工智能技术的发展和应用。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
AI21 Jamba Large 1.6 是一款强大的混合 SSM-Transformer 架构基础模型,擅长长文本处理和高效推理。
AI21-Jamba-Large-1.6 是由 AI21 Labs 开发的混合 SSM-Transformer 架构基础模型,专为长文本处理和高效推理而设计。该模型在长文本处理、推理速度和质量方面表现出色,支持多种语言,并具备强大的指令跟随能力。它适用于需要处理大量文本数据的企业级应用,如金融分析、内容生成等。该模型采用 Jamba Open Model License 授权,允许在许可条款下进行研究和商业使用。
70亿参数的超长上下文对话模型
InternLM2.5-7B-Chat-1M 是一个开源的70亿参数的对话模型,具有卓越的推理能力,在数学推理方面超越了同量级模型。该模型支持1M超长上下文窗口,能够处理长文本任务,如LongBench等。此外,它还具备强大的工具调用能力,能够从上百个网页搜集信息进行分析推理。
70亿参数的高性能对话模型
InternLM2.5-7B-Chat是一个开源的7亿参数的中文对话模型,专为实用场景设计,具有卓越的推理能力,在数学推理方面超越了Llama3和Gemma2-9B等模型。支持从上百个网页搜集信息进行分析推理,具有强大的工具调用能力,支持1M超长上下文窗口,适合进行长文本处理和复杂任务的智能体构建。
一款由Gradient AI团队开发的高性能文本生成模型。
Llama-3 8B Instruct 262k是一款由Gradient AI团队开发的文本生成模型,它扩展了LLama-3 8B的上下文长度至超过160K,展示了SOTA(State of the Art)大型语言模型在学习长文本操作时的潜力。该模型通过适当的调整RoPE theta参数,并结合NTK-aware插值和数据驱动的优化技术,实现了在长文本上的高效学习。此外,它还基于EasyContext Blockwise RingAttention库构建,以支持在高性能硬件上的可扩展和高效训练。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
一款经过优化的大型语言模型,擅长文本生成和对话。
OLMo-2-1124-13B-Instruct是由Allen AI研究所开发的一款大型语言模型,专注于文本生成和对话任务。该模型在多个任务上表现出色,包括数学问题解答、科学问题解答等。它是基于13B参数的版本,经过在特定数据集上的监督微调和强化学习训练,以提高其性能和安全性。作为一个开源模型,它允许研究人员和开发者探索和改进语言模型的科学。
处理长文本的大型语言模型
LongLLaMA 是一个大型语言模型,能够处理长篇文本。它基于 OpenLLaMA,并使用 Focused Transformer (FoT) 方法进行了微调。它能够处理长达 256k 标记甚至更多的文本。我们提供了一个较小的 3B 基础模型(未经过指令调整),并在 Hugging Face 上提供了支持更长上下文的推断代码。我们的模型权重可以作为现有实现中 LLaMA 的替代品(适用于最多 2048 个标记的短上下文)。此外,我们还提供了评估结果和与原始 OpenLLaMA 模型的比较。
用AI处理文本
Plus on Setapp是一款AI助手应用,可以帮助您撰写、翻译、总结和解释文本。它可以在任何应用程序中选择文本,并通过简单的快捷键将其发送给AI助手,让它帮您改进、校对、总结、解释或翻译文本。此外,您还可以自定义提示来完成特定任务。Plus on Setapp是Setapp订阅服务中的一部分,订阅费用为9.99美元/月。
新一代多语言预训练模型,支持长文本和代码执行。
GLM-4-9B-Chat是智谱AI推出的新一代预训练模型GLM-4系列中的开源版本,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并且推出了支持1M上下文长度的模型。
业界首个llama3中文指令微调模型,支持长文本输入,实现高质量中文问答。
Unichat-llama3-Chinese是中国联通AI创新中心发布的业界首个基于Meta Llama 3模型的中文指令微调模型。该模型通过增加中文数据进行训练,实现了高质量的中文问答功能,支持长达28K的上下文输入,并计划发布支持长度64K的版本。模型的微调指令数据经过人工筛查,确保了数据的高质量。此外,该模型还计划陆续发布700亿参数的中文微调版本,包括长文本版本和加入中文二次预训练的版本。
一种用于测试长文本语言模型的合理性的评估基准
RULER 是一种新的合成基准,为长文本语言模型提供了更全面的评估。它扩展了普通检索测试,涵盖了不同类型和数量的信息点。此外,RULER 引入了新的任务类别,如多跳跟踪和聚合,以测试超出检索从上下文中的行为。在 RULER 上评估了 10 个长文本语言模型,并在 13 个代表性任务中获得了表现。尽管这些模型在普通检索测试中取得了几乎完美的准确性,但在上下文长度增加时,它们表现得非常差。只有四个模型(GPT-4、Command-R、Yi-34B 和 Mixtral)在长度为 32K 时表现得相当不错。我们公开源 RULER,以促进对长文本语言模型的全面评估。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
使大型语言模型在长文本问答中生成细粒度引用
LongCite是一个开源的模型,它通过训练大型语言模型(LLMs)来实现在长文本问答场景中生成准确的回答和精确的句级引用。该技术的重要性在于它能够提高问答系统的准确性和可信度,使用户能够验证输出信息的来源。LongCite支持高达128K的上下文长度,并且提供了两个模型:LongCite-glm4-9b和LongCite-llama3.1-8b,分别基于GLM-4-9B和Meta-Llama-3.1-8B进行训练。
长文本问答增强型检索生成模型
LongRAG是一个基于大型语言模型(LLM)的双视角、鲁棒的检索增强型生成系统范式,旨在增强对复杂长文本知识的理解和检索能力。该模型特别适用于长文本问答(LCQA),能够处理全局信息和事实细节。产品背景信息显示,LongRAG通过结合检索和生成技术,提升了对长文本问答任务的性能,特别是在需要多跳推理的场景中。该模型是开源的,可以免费使用,主要面向研究者和开发者。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
© 2025 AIbase 备案号:闽ICP备08105208号-14