需求人群:
"目标受众为需要进行复杂对话处理、长文本分析和信息搜集的企业和研究机构。该模型适合于构建智能客服、个人助理、教育辅导等应用场景,帮助用户更高效地处理语言相关的任务。"
使用场景示例:
用于构建智能客服系统,提供24小时自动回复服务。
作为个人助理,帮助用户管理日程和提醒重要事项。
在教育领域,辅助学生学习,提供个性化的学习建议和答疑。
产品特色:
在数学推理方面表现优异,超越同量级模型。
支持1M超长上下文窗口,适合长文本处理。
能够从多个网页搜集信息进行分析推理。
具备指令理解、工具筛选与结果反思等能力。
支持通过LMDeploy和vLLM进行模型部署和API服务。
代码遵循Apache-2.0协议开源,模型权重对学术研究完全开放。
使用教程:
步骤1: 使用提供的代码加载InternLM2.5-7B-Chat模型。
步骤2: 设置模型参数,选择适当的精度(float16或float32)。
步骤3: 利用模型的chat或stream_chat接口进行对话或流式生成。
步骤4: 通过LMDeploy或vLLM部署模型,实现本地或云端推理。
步骤5: 发送请求到模型,获取对话或文本生成的结果。
步骤6: 根据应用场景对结果进行后处理,如格式化输出或进一步分析。
浏览量:65
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
70亿参数的超长上下文对话模型
InternLM2.5-7B-Chat-1M 是一个开源的70亿参数的对话模型,具有卓越的推理能力,在数学推理方面超越了同量级模型。该模型支持1M超长上下文窗口,能够处理长文本任务,如LongBench等。此外,它还具备强大的工具调用能力,能够从上百个网页搜集信息进行分析推理。
70亿参数的高性能对话模型
InternLM2.5-7B-Chat是一个开源的7亿参数的中文对话模型,专为实用场景设计,具有卓越的推理能力,在数学推理方面超越了Llama3和Gemma2-9B等模型。支持从上百个网页搜集信息进行分析推理,具有强大的工具调用能力,支持1M超长上下文窗口,适合进行长文本处理和复杂任务的智能体构建。
AI21推出的Jamba 1.6模型,专为企业私有部署设计,具备卓越的长文本处理能力。
Jamba 1.6 是 AI21 推出的最新语言模型,专为企业私有部署而设计。它在长文本处理方面表现出色,能够处理长达 256K 的上下文窗口,采用混合 SSM-Transformer 架构,可高效准确地处理长文本问答任务。该模型在质量上超越了 Mistral、Meta 和 Cohere 等同类模型,同时支持灵活的部署方式,包括在本地或 VPC 中私有部署,确保数据安全。它为企业提供了一种无需在数据安全和模型质量之间妥协的解决方案,适用于需要处理大量数据和长文本的场景,如研发、法律和金融分析等。目前,Jamba 1.6 已在多个企业中得到应用,如 Fnac 使用其进行数据分类,Educa Edtech 利用其构建个性化聊天机器人等。
AI21 Jamba Large 1.6 是一款强大的混合 SSM-Transformer 架构基础模型,擅长长文本处理和高效推理。
AI21-Jamba-Large-1.6 是由 AI21 Labs 开发的混合 SSM-Transformer 架构基础模型,专为长文本处理和高效推理而设计。该模型在长文本处理、推理速度和质量方面表现出色,支持多种语言,并具备强大的指令跟随能力。它适用于需要处理大量文本数据的企业级应用,如金融分析、内容生成等。该模型采用 Jamba Open Model License 授权,允许在许可条款下进行研究和商业使用。
QwQ-32B 是一款强大的推理模型,专为复杂问题解决和文本生成设计,性能卓越。
QwQ-32B 是 Qwen 系列的推理模型,专注于复杂问题的思考和推理能力。它在下游任务中表现出色,尤其是在解决难题方面。该模型基于 Qwen2.5 架构,经过预训练和强化学习优化,具有 325 亿参数,支持 131072 个完整上下文长度的处理能力。其主要优点包括强大的推理能力、高效的长文本处理能力和灵活的部署选项。该模型适用于需要深度思考和复杂推理的场景,如学术研究、编程辅助和创意写作等。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
Phi-4-mini-instruct 是一款轻量级的开源语言模型,专注于高质量推理密集型数据。
Phi-4-mini-instruct 是微软推出的一款轻量级开源语言模型,属于 Phi-4 模型家族。它基于合成数据和经过筛选的公开网站数据进行训练,专注于高质量、推理密集型数据。该模型支持 128K 令牌上下文长度,并通过监督微调和直接偏好优化来增强指令遵循能力和安全性。Phi-4-mini-instruct 在多语言支持、推理能力(尤其是数学和逻辑推理)以及低延迟场景下表现出色,适用于资源受限的环境。该模型于 2025 年 2 月发布,支持多种语言,包括英语、中文、日语等。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
基于PRIME方法训练的7B参数语言模型,专为提升推理能力而设计。
PRIME-RL/Eurus-2-7B-PRIME是一个基于PRIME方法训练的7B参数的语言模型,旨在通过在线强化学习提升语言模型的推理能力。该模型从Eurus-2-7B-SFT开始训练,利用Eurus-2-RL-Data数据集进行强化学习。PRIME方法通过隐式奖励机制,使模型在生成过程中更加注重推理过程,而不仅仅是结果。该模型在多项推理基准测试中表现出色,相较于其SFT版本平均提升了16.7%。其主要优点包括高效的推理能力提升、较低的数据和模型资源需求,以及在数学和编程任务中的优异表现。该模型适用于需要复杂推理能力的场景,如编程问题解答和数学问题求解。
EurusPRM-Stage1是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage1是PRIME-RL项目的一部分,旨在通过隐式过程奖励来增强生成模型的推理能力。该模型利用隐式过程奖励机制,无需额外标注过程标签,即可在推理过程中获得过程奖励。其主要优点是能够有效地提升生成模型在复杂任务中的表现,同时降低了标注成本。该模型适用于需要复杂推理和生成能力的场景,如数学问题解答、自然语言生成等。
PRIME通过隐式奖励增强在线强化学习,提升语言模型的推理能力。
PRIME是一个开源的在线强化学习解决方案,通过隐式过程奖励来增强语言模型的推理能力。该技术的主要优点在于能够在不依赖显式过程标签的情况下,有效地提供密集的奖励信号,从而加速模型的训练和推理能力的提升。PRIME在数学竞赛基准测试中表现出色,超越了现有的大型语言模型。其背景信息包括由多个研究者共同开发,并在GitHub上发布了相关代码和数据集。PRIME的定位是为需要复杂推理任务的用户提供强大的模型支持。
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
Qwen2.5-Coder系列中的0.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,Qwen2.5-Coder-32B已成为当前最先进的开源代码语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中,如代码代理等,提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。该模型基于Qwen2.5,扩展了训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前开源代码LLM中的佼佼者,其编码能力与GPT-4o相匹配。此模型为GPTQ-量化的4位指令调优3B参数Qwen2.5-Coder模型,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
开源的32亿参数代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int4是基于Qwen2.5的代码生成大型语言模型,具有32.5亿参数量,支持长文本处理,最大支持128K tokens。该模型在代码生成、代码推理和代码修复方面有显著提升,是当前开源代码语言模型中的佼佼者。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列针对代码生成优化的大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。Qwen2.5-Coder在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还提供了更全面的基础,适用于现实世界中的代码代理等应用场景。
Qwen2.5-Coder系列中参数最多的开源代码生成模型
Qwen2.5-Coder-32B是基于Qwen2.5的代码生成模型,拥有32亿参数,是目前开源代码语言模型中参数最多的模型之一。它在代码生成、代码推理和代码修复方面有显著提升,能够处理长达128K tokens的长文本,适用于代码代理等实际应用场景。该模型在数学和通用能力上也保持了优势,支持长文本处理,是开发者在进行代码开发时的强大助手。
高效能的指令式微调AI模型
Mistral-Small-Instruct-2409是由Mistral AI Team开发的一个具有22B参数的指令式微调AI模型,支持多种语言,并能够支持高达128k的序列长度。该模型特别适用于需要长文本处理和复杂指令理解的场景,如自然语言处理、机器学习等领域。
将网页HTML内容转换为清晰的Markdown格式。
Reader-LM是Jina AI开发的小型语言模型,旨在将网络中的原始、杂乱的HTML内容转换为清洁的Markdown格式。这些模型特别针对长文本处理进行了优化,支持多语言,并能够处理高达256K令牌的上下文长度。Reader-LM模型通过直接从HTML到Markdown的转换,减少了对正则表达式和启发式规则的依赖,提高了转换的准确性和效率。
通过自博弈相互推理,提升小型语言模型的解决问题能力。
rStar是一个自我博弈相互推理方法,它通过将推理过程分解为解决方案生成和相互验证,显著提升了小型语言模型(SLMs)的推理能力,无需微调或使用更高级的模型。rStar通过蒙特卡洛树搜索(MCTS)和人类推理动作的结合,构建更高质量的推理轨迹,并通过另一个类似能力的SLM作为鉴别器来验证这些轨迹的正确性。这种方法在多个SLMs上进行了广泛的实验,证明了其在解决多样化推理问题方面的有效性。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14