浏览量:42
最新流量情况
月访问量
24.67k
平均访问时长
00:00:32
每次访问页数
2.89
跳出率
45.13%
流量来源
直接访问
33.79%
自然搜索
48.20%
邮件
0.09%
外链引荐
11.31%
社交媒体
5.99%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
9.54%
印度
14.14%
俄罗斯
6.97%
美国
15.77%
越南
7.54%
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
大规模人工智能开放网络
LAION是一个非营利组织,致力于提供机器学习资源给公众使用,包括数据集、工具和模型。我们鼓励开放公共教育,并通过重复使用现有数据集和模型来更环保地使用资源。我们提供多个数据集、模型和项目,以支持广泛的人工智能研究。
高质量数据集,用于OLMo2训练的第二阶段。
DOLMino dataset mix for OLMo2 stage 2 annealing training是一个混合了多种高质数据的数据集,用于在OLMo2模型训练的第二阶段。这个数据集包含了网页页面、STEM论文、百科全书等多种类型的数据,旨在提升模型在文本生成任务中的表现。它的重要性在于为开发更智能、更准确的自然语言处理模型提供了丰富的训练资源。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
自监督触觉表示,用于基于视觉的触觉传感。
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
为机器人提供虚拟模拟和评估的先进世界模型。
1X 世界模型是一种机器学习程序,能够模拟世界如何响应机器人的行为。它基于视频生成和自动驾驶汽车世界模型的技术进步,为机器人提供了一个虚拟模拟器,能够预测未来的场景并评估机器人策略。这个模型不仅能够处理复杂的对象交互,如刚体、掉落物体的影响、部分可观察性、可变形物体和铰接物体,还能够在不断变化的环境中进行评估,这对于机器人技术的发展至关重要。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
大规模图像编辑数据集
UltraEdit是一个大规模的图像编辑数据集,包含约400万份编辑样本,自动生成,基于指令的图像编辑。它通过利用大型语言模型(LLMs)的创造力和人类评估员的上下文编辑示例,提供了一个系统化的方法来生产大规模和高质量的图像编辑样本。UltraEdit的主要优点包括:1) 它通过利用大型语言模型的创造力和人类评估员的上下文编辑示例,提供了更广泛的编辑指令;2) 其数据源基于真实图像,包括照片和艺术作品,提供了更大的多样性和减少了偏见;3) 它还支持基于区域的编辑,通过高质量、自动生成的区域注释得到增强。
高效的检索增强生成研究工具包
FlashRAG是一个Python工具包,用于检索增强生成(RAG)研究的复现和开发。它包括32个预处理的基准RAG数据集和12种最先进的RAG算法。FlashRAG提供了一个广泛且可定制的框架,包括检索器、重排器、生成器和压缩器等RAG场景所需的基本组件,允许灵活组装复杂流程。此外,FlashRAG还提供了高效的预处理阶段和优化的执行,支持vLLM、FastChat等工具加速LLM推理和向量索引管理。
一个公益项目,致力于帮助国内AI开发者快速、稳定的下载模型、数据集。
HuggingFace镜像站是一个非盈利性项目,旨在为国内的AI开发者提供一个快速且稳定的模型和数据集下载平台。通过优化下载过程,减少因网络问题导致的中断,它极大地提高了开发者的工作效率。该镜像站支持多种下载方式,包括网页直接下载、使用官方命令行工具huggingface-cli、本站开发的hfd下载工具以及通过设置环境变量来实现非侵入式下载。
MNBVC是一个超大规模的中文语料集,对标chatGPT训练的40T数据
MNBVC(Massive Never-ending BT Vast Chinese corpus)是一个旨在为AI提供丰富中文语料的项目。它不仅包括主流文化内容,还涵盖了小众文化和网络用语。数据集包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等多种形式的纯文本中文数据。
发现由社区创造的令人惊叹的机器学习应用
Scepter Studio 是由 modelscope 开发的 Hugging Face Space。它是一个平台,用户可以发现由社区创造的令人惊叹的机器学习应用。Scepter Studio 提供了各种模型和应用程序,用户可以在其中浏览、使用和共享各种机器学习模型。它为用户提供了方便的方式来探索和利用最新的机器学习技术,以解决各种问题。
文本转音乐和音频
MAGNeT是一个提供各种人工智能模型和数据集的社区平台。用户可以在平台上找到各种先进的自然语言处理和机器学习模型,以及相关的数据集。该平台还提供了一系列解决方案,包括文本到语音转换、图像处理等。MAGNeT定位于为开发人员、研究人员和企业提供高质量的人工智能模型和数据集。
3D人物生成模型
En3D是一个提供先进自然语言处理模型的平台。他们提供了各种各样的模型和数据集,以帮助开发者构建和部署自然语言处理应用。En3D平台的优势在于提供了大量预训练模型和方便的部署工具,使得开发者能够快速、高效地构建自然语言处理应用。
端到端MLLM,实现精准引用和定位
ml-ferret是一个端到端的机器学习语言模型(MLLM),能够接受各种形式的引用并响应性地在多模态环境中进行精准定位。它结合了混合区域表示和空间感知的视觉采样器,支持细粒度和开放词汇的引用和定位。此外,ml-ferret还包括GRIT数据集(约110万个样本)和Ferret-Bench评估基准。
一个强大的文本生成模型,适用于多种对话应用。
DeepSeek-V3-0324 是一个先进的文本生成模型,具有 685 亿参数,采用 BF16 和 F32 张量类型,能够支持高效的推理和文本生成。该模型的主要优点在于其强大的生成能力和开放源码的特性,使其可以被广泛应用于多种自然语言处理任务。该模型的定位是为开发者和研究人员提供一个强大的工具,帮助他们在文本生成领域取得突破。
RF-DETR 是由 Roboflow 开发的实时目标检测模型。
RF-DETR 是一个基于变压器的实时目标检测模型,旨在为边缘设备提供高精度和实时性能。它在 Microsoft COCO 基准测试中超过了 60 AP,具有竞争力的性能和快速的推理速度,适合各种实际应用场景。RF-DETR 旨在解决现实世界中的物体检测问题,适用于需要高效且准确检测的行业,如安防、自动驾驶和智能监控等。
高保真可动画 3D 人类重建模型,快速生成动画角色。
LHM(大规模可动画人类重建模型)利用多模态变压器架构进行高保真 3D 头像重建,支持从单张图像生成可动画的 3D 人类形象。该模型能够详细保留服装几何和纹理,尤其是在面部身份和细节恢复方面表现优异,适合对 3D 重建精度有较高要求的应用场景。
Pruna 是一个模型优化框架,帮助开发者快速高效交付模型。
Pruna 是一个为开发者设计的模型优化框架,通过一系列压缩算法,如量化、修剪和编译等技术,使得机器学习模型在推理时更快、体积更小且计算成本更低。产品适用于多种模型类型,包括 LLMs、视觉转换器等,且支持 Linux、MacOS 和 Windows 等多个平台。Pruna 还提供了企业版 Pruna Pro,解锁更多高级优化功能和优先支持,助力用户在实际应用中提高效率。
SpatialLM 是一个用于空间理解的大语言模型。
SpatialLM 是一个专为处理 3D 点云数据设计的大型语言模型,能够生成结构化的 3D 场景理解输出,包括建筑元素和对象的语义类别。它能够从单目视频序列、RGBD 图像和 LiDAR 传感器等多种来源处理点云数据,无需专用设备。SpatialLM 在自主导航和复杂 3D 场景分析任务中具有重要应用价值,显著提升空间推理能力。
一个开源文本转语音系统,致力于实现人类语音的自然化。
Orpheus TTS 是一个基于 Llama-3b 模型的开源文本转语音系统,旨在提供更加自然的人类语音合成。它具备较强的语音克隆能力和情感表达能力,适合各种实时应用场景。该产品是免费的,旨在为开发者和研究者提供便捷的语音合成工具。
Selene API 是一款用于评估 AI 应用性能的先进工具,提供精准的评分和反馈。
Selene API 是 Atla AI 推出的一款先进的人工智能评估模型。它通过使用世界领先的 LLM-as-a-Judge 技术,能够对 AI 应用进行精准的评估。该产品的主要优点是其高准确性和可靠性,能够在各种评估基准上超越前沿模型。它不仅能够提供准确的评分,还能生成具有可操作性的反馈意见,帮助开发者优化他们的 AI 应用。Selene API 的背景信息显示,它是由 Atla AI 公司开发的,该公司致力于构建安全的人工智能未来。目前,该产品提供免费试用,并采用基于使用量的定价模式。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
一个用于将几乎所有内容转换为Markdown格式的Model Context Protocol服务器。
Markdownify是一个基于Model Context Protocol的服务器工具,能够将多种文件类型和网络内容转换为Markdown格式。它支持PDF、图片、音频(含转录)、DOCX、XLSX、PPTX等多种文件格式的转换,还能将YouTube视频字幕、Bing搜索结果和网页内容转换为Markdown。该工具对于需要高效整理和分享信息的用户来说非常实用,尤其是在处理大量非结构化数据时,能够快速生成可读性强的Markdown文本,提高工作效率。
为Firefox浏览器翻译功能优化的CPU加速神经机器翻译模型。
Firefox Translations Models 是由Mozilla开发的一组CPU优化的神经机器翻译模型,专为Firefox浏览器的翻译功能设计。该模型通过高效的CPU加速技术,提供快速且准确的翻译服务,支持多种语言对。其主要优点包括高性能、低延迟和对多种语言的支持。该模型是Firefox浏览器翻译功能的核心技术,为用户提供无缝的网页翻译体验。
基于 Gemini 的 Colab 数据科学助手,可自动生成完整的 Colab 笔记本代码。
Data Science Agent in Colab 是 Google 推出的一款基于 Gemini 的智能工具,旨在简化数据科学工作流程。它通过自然语言描述自动生成完整的 Colab 笔记本代码,涵盖数据导入、分析和可视化等任务。该工具的主要优点是节省时间、提高效率,并且生成的代码可修改和共享。它面向数据科学家、研究人员和开发者,尤其是那些希望快速从数据中获取洞察的用户。目前该工具免费提供给符合条件的用户。
3FS是一个高性能分布式文件系统,专为AI训练和推理工作负载设计。
3FS是一个专为AI训练和推理工作负载设计的高性能分布式文件系统。它利用现代SSD和RDMA网络,提供共享存储层,简化分布式应用开发。其核心优势在于高性能、强一致性和对多种工作负载的支持,能够显著提升AI开发和部署的效率。该系统适用于大规模AI项目,尤其在数据准备、训练和推理阶段表现出色。
Level-Navi Agent是一个无需训练即可使用的框架,利用大语言模型进行深度查询理解和精准搜索。
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
提供全球最便宜的GPU云服务,助力自托管AI/ML开发。
Thunder Compute是一个专注于AI/ML开发的GPU云服务平台,通过虚拟化技术,帮助用户以极低的成本使用高性能GPU资源。其主要优点是价格低廉,相比传统云服务提供商可节省高达80%的成本。该平台支持多种主流GPU型号,如NVIDIA Tesla T4、A100等,并提供7+ Gbps的网络连接,确保数据传输的高效性。Thunder Compute的目标是为AI开发者和企业降低硬件成本,加速模型训练和部署,推动AI技术的普及和应用。
olmOCR是一个用于将PDF线性化以用于LLM数据集训练的工具包。
olmOCR是由Allen Institute for Artificial Intelligence (AI2)开发的一个开源工具包,旨在将PDF文档线性化,以便用于大型语言模型(LLM)的训练。该工具包通过将PDF文档转换为适合LLM处理的格式,解决了传统PDF文档结构复杂、难以直接用于模型训练的问题。它支持多种功能,包括自然文本解析、多版本比较、语言过滤和SEO垃圾信息移除等。olmOCR的主要优点是能够高效处理大量PDF文档,并通过优化的提示策略和模型微调,提高文本解析的准确性和效率。该工具包适用于需要处理大量PDF数据的研究人员和开发者,尤其是在自然语言处理和机器学习领域。
© 2025 AIbase 备案号:闽ICP备08105208号-14